Page 123 - IJB-10-5
P. 123

International Journal of Bioprinting                                 3D bioprinting for organoid-derived EVs




            50.  Li J, Chen M, Fan X, Zhou H. Recent advances in bioprinting   62.  Grix T, Ruppelt A, Thomas A, et al. Bioprinting perfusion-
               techniques: approaches, applications and future prospects.    enabled liver equivalents for advanced organ-on-a-chip
               J Transl Med. 2016;14(1):271.                      applications. Genes. 2018;9(4):176.
               doi: 10.1186/s12967-016-1028-0                     doi: 10.3390/genes9040176
            51.  Carberry BJ, Hergert JE, Yavitt FM, et al. 3D printing of   63.  Pamarthy S, Sabaawy HE. Patient derived organoids in
               sacrificial thioester elastomers using digital light processing   prostate cancer: improving therapeutic efficacy in precision
               for templating 3D organoid structures in soft biomatrices.   medicine. Mol Cancer. 2021;20(1):125.
               Biofabrication. 2021;13(4):044104.                 doi: 10.1186/s12943-021-01426-3
               doi: 10.1088/1758-5090/ac1c98
                                                               64.  Vlachogiannis G, Hedayat S, Vatsiou A, et al. Patient-
            52.  Zhang Y, Li G, Wang J, Zhou F, Ren X, Su J. Small joint   derived organoids model treatment response of metastatic
               organoids 3D bioprinting: construction strategy and   gastrointestinal cancers. Science. 2018;359(6378):920-926.
               application. Small. 2023;20(8):2302506.            doi: 10.1126/science.aao2774
               doi: 10.1002/smll.202302506
                                                               65.  Sachs N, Ligt JD, Kopper O, et al. A living biobank of breast
            53.  Kačarević ŽP, Rider PM, Alkildani S, et al. An introduction   cancer organoids captures disease heterogeneity.  Cell.
               to 3D bioprinting: possibilities, challenges and future   2018;172(1–2):373-386.e310.
               aspects. Materials (Basel). 2018;11(11):2199.      doi: 10.1016/j.cell.2017.11.010
               doi: 10.3390/ma11112199
                                                               66.  Maenhoudt N, Defraye C, Boretto M, et al. Developing
            54.  Chang MY, Bogacheva MS, Lou YR. Challenges for   organoids from ovarian cancer as experimental and
               the applications of human pluripotent stem cell-   preclinical models. Stem Cell Rep. 2020;14(4):717-729.
               derived liver organoids.  Front Cell and Dev Biol.  2021;      doi: 10.1016/j.stemcr.2020.03.004
               9:748576.                                       67.  Aboulkheyr Es H, Montazeri L, Aref AR, Vosough M,
               doi: 10.3389/fcell.2021.748576
                                                                  Baharvand H. Personalized cancer medicine: an organoid
            55.  Hospodiuk M, Dey M, Sosnoski DM, Özbolat İT. The   approach. Trends Biotechnol. 2018;36(4):358-371.
               bioink: a comprehensive review on bioprintable materials.      doi: 10.1016/j.tibtech.2017.12.005
               Biotechnol Adv. 2017;35(2):217-239.             68.  Schene IF, Joore IP, Oka R, et al. Prime editing for functional
               doi: 10.1016/j.biotechadv.2016.12.006
                                                                  repair in patient-derived disease models.  Nat Commun.
            56.  Li J, Chen M, Fan X, Zhou H. Recent advances in bioprinting   2020;11(1):5352.
               techniques: approaches, applications and future prospects.       doi: 10.1038/s41467-020-19136-7
               J Transl Med. 2016;14:1-15.                     69.  Gopal S, Rodrigues  AL, Dordick JS. Exploiting CRISPR
               doi: 10.1186/s12967-016-1028-0
                                                                  Cas9 in three-dimensional stem cell cultures to model
            57.  Kryou C, Leva V, Chatzipetrou M, Zergioti I. Bioprinting for   disease. Front Bioeng Biotechnol. 2020;8:692.
               liver transplantation. Bioengineering. 2019;6(4):95.     doi: 10.3389/fbioe.2020.00692
               doi: 10.3390/bioengineering6040095
                                                               70.  Dekkers JF, Wiegerinck CL, de Jonge HR, et al. A functional
            58.  Bertassoni LE, Cardoso JC, Manoharan V, et al. Direct-write   CFTR assay using primary cystic fibrosis intestinal
               bioprinting  of  cell-laden  methacrylated  gelatin  hydrogels.   organoids. Nat Med. 2013;19(7):939-945.
               Biofabrication. 2014;6(2):024105.                  doi: 10.1038/nm.3201
               doi: 10.1088/1758-5082/6/2/024105
                                                               71.  Inak G, Rybak-Wolf A, Lisowski P, et al. Defective metabolic
            59.  Paxton N, Smolan W, Böck T, Melchels FPW, Groll J.   programming impairs early neuronal morphogenesis in
               Proposal  to assess printability of bioinks for extrusion-  neural cultures and an organoid model of Leigh syndrome.
               based bioprinting and evaluation of rheological    Nat Commun. 2021;12(1):1929.
               properties governing bioprintability.  Biofabrication.  2017;      doi: 10.1038/s41467-021-22117-z
               9:044107.                                       72.  Zhang W, Ma L, Yang M, et al. Cerebral organoid and
               doi: 10.1088/1758-5090/aa8dd8
                                                                  mouse models reveal a RAB39b-PI3K-mTOR pathway-
            60.  Liu W, Heinrich MA, Zhou Y, et al. Extrusion bioprinting   dependent dysregulation of cortical development leading
               of shear‐thinning gelatin methacryloyl bioinks. Adv Healthc   to  macrocephaly/autism  phenotypes.  Genes Dev.  2020;
               Mater. 2017;6(12):1601451.                         34(7–8):580-597.
               doi: 10.1002/adhm.201601451                        doi: 10.1101/gad.332494.119
            61.  Bernal PN, Bouwmeester M, Madrid-Wolff J, et al.   73.  An HL, Kuo HC, Tang TK. Modeling human primary
               Volumetric bioprinting of organoids and optically tuned   microcephaly with hiPSC-derived brain organoids carrying
               hydrogels to build liver-like metabolic biofactories.  Adv   CPAP-E1235V disease-associated mutant protein. Front Cell
               Mater. 2022;34(15):2110054.                        Dev Biol. 2022;10:830432.
               doi: 10.1002/adma.202110054                        doi: 10.3389/fcell.2022.830432


            Volume 10 Issue 5 (2024)                       115                                doi: 10.36922/ijb.4054
   118   119   120   121   122   123   124   125   126   127   128