Page 127 - IJB-10-5
P. 127

International Journal of Bioprinting                                 3D bioprinting for organoid-derived EVs




            144  Manai F, Smedowski  A, Kaarniranta  K, Comincini  S,   osteochondral defect regeneration. Theranostics. 2019;9(9):
               Amadio M. Extracellular vesicles in degenerative retinal   2439-2459.
               diseases: a new therapeutic paradigm.  J Control Release.      doi: 10.7150/thno.31017
               2024;365:448-468.                               154. Yerneni SS, Whiteside TL, Weiss LE, Campbell
               doi: 10.1016/j.jconrel.2023.11.035
                                                                  PG. Bioprinting exosome-like extracellular vesicle
            145. Rocha S, Carvalho J, Oliveira P, et al. 3D cellular architecture   microenvironments. Bioprinting. 2019;13:e00041.
               affects MicroRNA and protein cargo of extracellular vesicles.      doi: 10.1016/j.bprint.2019.e00041
               Adv Sci. 2018;6(4):1800948.                     155. Theodoraki MN, Yerneni S, Gooding WE, et al. Circulating
               doi: 10.1002/advs.201800948
                                                                  exosomes measure responses to therapy in head and neck
            146. Abdollahi S. Extracellular vesicles from organoids and 3D   cancer patients treated with cetuximab, ipilimumab, and
               culture systems. Biotechnol Bioeng. 2020;118(3):1029-1049.  IMRT. OncoImmunology. 2019;8(7):e1593805.
               doi: 10.1002/bit.27606                             doi: 10.1080/2162402X.2019.1593805
            147. Li H, Gao L, Du J, Ma T, Ye Z, Li Z. To better generate   156. Buenafe AC, Dorrell C, Reddy AP, Klimek J, Marks DL.
               organoids, what can we learn from teratomas?  Front Cell   Proteomic analysis distinguishes extracellular vesicles
               Dev Biol. 2021;9:700482.                           produced by cancerous versus healthy pancreatic organoids.
               doi: 10.3389/fcell.2021.700482                     Sci Rep. 2022;12(1):3556.
                                                                  doi: 10.1038/s41598-022-07451-6
            148. Maiullari F, Chirivì M, Costantini M, et al. In vivo
               organized neovascularization induced by 3D bioprinted   157. Huang L, Bockorny B, Paul I, et al. Pancreatic tumor
               endothelial-derived extracellular vesicles.  Biofabrication.   organoids for modeling in vivo drug response and
               2021;13(3):035014.                                 discovering clinically-actionable biomarkers.  bioRxiv.
               doi: 10.1088/1758-5090/abdacf                      2019:513267.
                                                                  doi: 10.1101/513267
            149. Zhang Y, Huo M, Wang Y, et al. A tailored bioactive 3D
               porous  poly(lactic-acid)-exosome  scaffold  with osteo-  158. Risha Y, Minic Z, Ghobadloo SM, Berezovski MV. The
               immunomodulatory  and  osteogenic  differentiation  proteomic  analysis of breast cell line exosomes reveals
               properties. J Biol Eng. 2022;16(1):22.             disease  patterns  and  potential  biomarkers.  Sci Rep.
               doi: 10.1186/s13036-022-00301-z                    2020;10(1):13572.
                                                                  doi: 10.1038/s41598-020-70393-4
            150. Kang Y, Xu J, Meng L, et al. 3D bioprinting of dECM/Gel/
               QCS/nHAp hybrid scaffolds laden with mesenchymal   159. Hyung S, Ko J, Heo YJ, et al. Patient-derived exosomes
               stem cell-derived exosomes to improve angiogenesis and   facilitate therapeutic  targeting  of oncogenic  MET  in
               osteogenesis. Biofabrication. 2023;15(2):024103.   advanced gastric cancer. Sci Adv. 2023;9(47):eadk1098.
               doi: 10.1088/1758-5090/acb6b8                      doi: 10.1126/sciadv.adk1098
            151. Sun Y, Zhang B, Zhai D, Wu C. Three-dimensional   160. Han P, Ivanovski S. 3D bioprinted extracellular vesicles
               printing of bioceramic-induced macrophage exosomes:   for tissue engineering-a perspective.  Biofabrication.
               immunomodulation and osteogenesis/angiogenesis.  NPG   2022;15(1):013001.
               Asia Mater. 2021;13(1):72.                         doi: 10.1088/1758-5090/ac9809
               doi: 10.1038/s41427-021-00340-w
                                                               161. Bartnikowski M, Vaquette C, Ivanovski S. Workflow for
            152. Yerneni  SS,  Lathwal  S,  Shrestha  P,  et  al.  Rapid  on-  highly porous resorbable custom 3D printed scaffolds using
               demand   extracellular  vesicle  augmentation  with  medical grade polymer for large volume alveolar bone
               versatile oligonucleotide tethers.  ACS Nano.  2019;13(9):   regeneration. Clin Oral Implants Res. 2020;31(5):431-441.
               10555-10565.                                       doi: 10.1111/clr.13579
               doi: 10.1021/acsnano.9b04651
                                                               162. Liu W, Heinrich MA, Zhou Y, et al. Extrusion bioprinting
            153. Chen P, Zheng L, Wang Y, et al. Desktop-stereolithography   of shear‐thinning gelatin methacryloyl bioinks. Adv Healthc
               3D printing of a radially oriented extracellular   Mater. 2017;6(12):1601451.
               matrix/mesenchymal stem cell exosome bioink for      doi: 10.1002/adhm.201601451















            Volume 10 Issue 5 (2024)                       119                                doi: 10.36922/ijb.4054
   122   123   124   125   126   127   128   129   130   131   132