Page 125 - IJB-10-5
P. 125

International Journal of Bioprinting                                 3D bioprinting for organoid-derived EVs




            97.  Ao Z, Cai H, Wu Z, et al. Tubular human brain organoids   108. Bélanger M, Magistretti PJ. The role of astroglia in
               to model microglia-mediated neuroinflammation. Lab Chip.   neuroprotection.  Dialogues Clin Neurosci.  2009;11(3):
               2021;21(14):2751-2762.                             281-295.
               doi: 10.1039/d1lc00030f                            doi: 10.31887/dcns.2009.11.3/mbelanger
            98.  Jian H, Li X, Dong Q, Tian S, Bai S. In vitro construction   109. Bordoni  M,  Rey  F,  Fantini  V,  et  al.  From  neuronal
               of liver organoids with biomimetic lobule structure   differentiation of iPSCs to 3D neuro-organoids: modelling
               by a multicellular 3D bioprinting strategy.  Cell Prolif.   and therapy of neurodegenerative diseases.  Int J Mol Sci.
               2023;56(5):e13465.                                 2018;19(12):3972.
               doi: 10.1111/cpr.13465                             doi: 10.3390/ijms19123972
            99.  Jelinsky SA, Derksen M, Bauman EB, et al. Molecular and   110. Ormel PR, Sá RVD, Bodegraven EJV, et al. Microglia
               functional characterization of human intestinal organoids   innately develop within cerebral organoids. Nat Commun.
               and monolayers for modeling epithelial barrier.  Inflamm   2018;9(1):4167.
               Bowel Dis. 2022;29(2):195-206.                     doi: 10.1038/s41467-018-06684-2
               doi: 10.1093/ibd/izac212                        111. Bi FC, Yang XH, Cheng X, et al. Optimization of cerebral
            100. Qu M, Xiong L, Lyu Y, et al. Establishment of intestinal   organoids: a more qualified model for Alzheimer’s disease
               organoid cultures modeling injury-associated epithelial   research. Transl Neurodegener. 2021;10(1):27.
               regeneration. Cell Res. 2021;31(3):259-271.        doi: 10.1186/s40035-021-00252-3
               doi: 10.1038/s41422-020-00453-x                 112. Kim H, Park HJ, Choi H, et al. Modeling G2019S-LRRK2
            101. d’Aldebert E, Quaranta M, Sébert M, et al. Characterization   sporadic Parkinson’s disease in 3D midbrain organoids.
               of human colon organoids from inflammatory bowel disease   Stem Cell Rep. 2019;12(3):518-531.
               patients. Front Cell Dev Biol. 2020;8:363.         doi: 10.1016/j.stemcr.2019.01.020
               doi: 10.3389/fcell.2020.00363                   113. Lozano R, Stevens L, Thompson BC, et al. 3D

            102. Meir M, Salm J, Fey C, et al. Enteroids generated from   printing of layered brain-like structures using peptide
               patients with severe inflammation in Crohn’s disease   modified gellan gum substrates.  Biomaterials.  2015;67:
               maintain alterations of junctional proteins. J Crohn’s Colitis.   264-273.
               2020;14(10):1473-1487.                             doi: 10.1016/j.biomaterials.2015.07.022
               doi: 10.1093/ecco-jcc/jjaa085                   114. Kuzmenko V, Karabulut E, Pernevik E, Enoksson P,
            103. Niklinska-Schirtz BJ, Venkateswaran S, Anbazhagan M, et   Gatenholm P. Tailor-made conductive inks from cellulose
               al.  Ileal  derived  organoids  from  Crohn’s  disease  patients   nanofibrils for 3D printing of neural guidelines. Carbohydr
               show unique transcriptomic and secretomic signatures. Cell   Polym. 2018;189:22-30.
               Mol Gastroenterol Hepatol. 2021;12(4):1267-1280.     doi: 10.1016/j.carbpol.2018.01.097
               doi: 10.1016/j.jcmgh.2021.06.018                115. Zhou Z, Cong L, Cong X. Patient-derived organoids in
            104. Sun X, Cui Z, Liang Y, et al. One-stop assembly of adherent   precision medicine: drug screening,  organoid-on-a-chip
               3D retinal organoids from hiPSCs based on 3D-printed   and living organoid biobank. Front Oncol. 2021;11:762184.
               derived  PDMS  microwell  platform.  Biofabrication.      doi: 10.3389/fonc.2021.762184
               2023;15(3):035005.                              116. Ayan  B,  Heo  DN,  Zhang  Z,  et  al.  Aspiration-assisted
               doi: 10.1088/1758-5090/acc761                      bioprinting for precise positioning of biologics.  Sci Adv.
            105. Fuller S, Steele M, Münch G. Activated astroglia during   2020;6(10):eaaw5111.
               chronic inflammation in Alzheimer’s disease--do they      doi: 10.1126/sciadv.aaw5111
               neglect their  neurosupportive roles?  Mutat Res.  2010;   117. Lehmann R, Lee CM, Shugart EC, et al. Human
               690(1–2):40-49.                                    organoids: a new dimension in cell biology. Mol Biol Cell.
               doi: 10.1016/j.mrfmmm.2009.08.016                  2019;30(10):1129-1137.
            106. Bélarbi K, Cuvelier E, Bonte MA, et al. Glycosphingolipids      doi: 10.1091/mbc.E19-03-0135
               and neuroinflammation in Parkinson’s disease.  Mol   118. Cidonio G, Glinka M, Dawson JI, Oreffo ROC. The cell in
               Neurodegener. 2020;15(1):59.                       the ink: improving biofabrication by printing stem cells
               doi: 10.1186/s13024-020-00408-1                    for skeletal regenerative medicine.  Biomaterials.  2019;209:
                                                                  10-24.
            107. Chiurchiù V, Maccarrone M. Chronic inflammatory
               disorders and their redox control: from molecular      doi: 10.1016/j.biomaterials.2019.04.009
               mechanisms to therapeutic opportunities.  Antioxid Redox   119. Dey M, Özbolat İT. 3D bioprinting of cells, tissues and
               Signal. 2011;15(9):2605-2641.                      organs. Sci Rep. 2020;10(1):14023.
               doi: 10.1089/ars.2010.3547                         doi: 10.1038/s41598-020-70086-y



            Volume 10 Issue 5 (2024)                       117                                doi: 10.36922/ijb.4054
   120   121   122   123   124   125   126   127   128   129   130