Page 155 - IJB-10-5
P. 155

International Journal of Bioprinting                               Liver printing: from structure to application




            91.  Bhatia  SN,  Ingber  DE.  Microfluidic  organs-on-chips.  Nat   104. Morgan FLC, Moroni L, Baker MB. Dynamic bioinks
               Biotechnol. 2014;32(8):760-772.                    to  advance  bioprinting.  Adv  Healthcare  Mater.
               doi: 10.1038/nbt.2989                              2020;9(15):1901798.
                                                                  doi: 10.1002/adhm.201901798
            92.  Moradi E, Jalili-Firoozinezhad S, Solati-Hashjin M.
               Microfluidic organ-on-a-chip models of human liver tissue.   105. Chimene D, Lennox KK, Kaunas RR, Gaharwar AK.
               Acta Biomater. 2020;116:67-83.                     Advanced bioinks for 3D printing: a materials science
               doi: 10.1016/j.actbio.2020.08.041                  perspective. Ann Biomed Eng. 2016;44(6):2090-2102.
            93.  Rennert K, Steinborn S, Gröger M, et al. A microfluidically      doi: 10.1007/s10439-016-1638-y
               perfused three dimensional human liver model. Biomaterials.   106. Heinrich MA, Liu W, Jimenez A, et al. 3D bioprinting:
               2015;71:119-131.                                   from benches to translational applications.  Small.
               doi: 10.1016/j.biomaterials.2015.08.043            2019;15(23):1805510.
            94.  Siwczak F, Cseresnyes Z, Hassan MIA, et al. Human      doi: 10.1002/smll.201805510
               macrophage  polarization  determines bacterial  persistence   107. Malda J, Visser J, Melchels FP, et al. 25th anniversary
               of Staphylococcus aureus in a liver-on-chip-based infection   article: engineering hydrogels for biofabrication. Adv Mater.
               model. Biomaterials. 2022;287:121632.              2013;25(36):5011-5028.
               doi: 10.1016/j.biomaterials.2022.121632            doi: 10.1002/adma.201302042
            95.  Jang K-J, Otieno MA, Ronxhi J, et al. Reproducing human   108. Lou J, Mooney DJ. Chemical strategies to engineer hydrogels
               and cross-species drug toxicities using a Liver-Chip.  Sci   for cell culture. Nat Rev Chem. 2022;6(10):726-744.
               Transl Med. 2019;11(517):eaax5516.                 doi: 10.1038/s41570-022-00420-7
               doi: 10.1126/scitranslmed.aax5516
                                                               109. Chaudhuri O, Cooper-White J, Janmey PA, Mooney DJ,
            96.  Nawroth JC, Petropolis DB, Manatakis DV, et al. Modeling   Shenoy VB. Effects of extracellular matrix viscoelasticity
               alcohol-associated liver disease in a human Liver-Chip. Cell   on  cellular  behaviour.  Nature.  2020;584(7822):
               Rep. 2021;36(3):109393.                            535-546.
               doi: 10.1016/j.celrep.2021.109393                  doi: 10.1038/s41586-020-2612-2
            97.  Ewart L, Apostolou A, Briggs SA, et al. Performance   110. Rizwan M, Ling C, Guo C, et al. Viscoelastic notch
               assessment and economic analysis of a human Liver-Chip   signaling hydrogel induces liver bile duct organoid
               for predictive toxicology. Commun Med. 2022;2(1):154.  growth and morphogenesis.  Adv Healthc Mater. 2022;
               doi: 10.1038/s43856-022-00209-1                    11(23):2200880.
            98.  Du K, Li S, Li C, et al. Modeling nonalcoholic fatty liver      doi: 10.1002/adhm.202200880
               disease on a liver lobule chip with dual blood supply. Acta   111. Murphy SV, Atala A. 3D bioprinting of tissues and organs.
               Biomater. 2021;134:228-239.                        Nat Biotechnol. 2014;32(8):773-785.
               doi: 10.1016/j.actbio.2021.07.013                  doi: 10.1038/nbt.2958
            99.  Hong G, Kim J, Oh H, et al. Production of multiple cell-laden   112. Vasconcelos DP, Águas AP, Barbosa MA, Pelegrín P, Barbosa
               microtissue spheroids with a biomimetic hepatic-lobule-like   JN. The inflammasome in host response to biomaterials:
               structure. Adv Mater. 2021;33(36):2102624.         bridging inflammation and tissue regeneration.  Acta
               doi: 10.1002/adma.202102624                        Biomater. 2019;83:1-12.
            100. Vunjak-Novakovic G, Ronaldson-Bouchard K, Radisic      doi: 10.1016/j.actbio.2018.09.056
               M. Organs-on-a-chip models for biological research. Cell.   113. Levato R, Jungst T, Scheuring RG, Blunk T, Groll J, Malda
               2021;184(18):4597-4611.                            J. From shape to function: the next step in bioprinting. Adv
               doi: 10.1016/j.cell.2021.08.005                    Mater. 2020;32(12):1906423.
            101. Ehrlich A, Duche D, Ouedraogo G, Nahmias Y. Challenges      doi: 10.1002/adma.201906423
               and opportunities in the design of liver-on-chip   114. Wang Y,  Cui C-B, Yamauchi M, et  al. Lineage restriction
               microdevices. Annu Rev Biomed Eng. 2019;21:219-239.  of human hepatic stem cells to mature fates is made
               doi: 10.1146/annurev-bioeng-060418-052305
                                                                  efficient by tissue-specific biomatrix scaffolds. Hepatology.
            102. Moroni L, Burdick JA, Highley C, et al. Biofabrication   2011;53(1):293-305.
               strategies for 3D in vitro models and regenerative medicine.      doi: 10.1002/hep.24012
               Nat Rev Mater. 2018;3(5):21-37.                 115. Nichol JW, Koshy ST, Bae H, Hwang CM, Yamanlar S,
               doi: 10.1038/s41578-018-0006-y
                                                                  Khademhosseini A.  Cell-laden microengineered gelatin
            103. Daly AC, Prendergast ME, Hughes AJ, Burdick JA.   methacrylate  hydrogels.  Biomaterials.  2010;31(21):
               Bioprinting for the biologist. Cell. 2021;184(1):18-32.  5536-5544.
               doi: 10.1016/j.cell.2020.12.002                    doi: 10.1016/j.biomaterials.2010.03.064



            Volume 10 Issue 5 (2024)                       147                                doi: 10.36922/ijb.3819
   150   151   152   153   154   155   156   157   158   159   160