Page 155 - IJB-10-5
P. 155
International Journal of Bioprinting Liver printing: from structure to application
91. Bhatia SN, Ingber DE. Microfluidic organs-on-chips. Nat 104. Morgan FLC, Moroni L, Baker MB. Dynamic bioinks
Biotechnol. 2014;32(8):760-772. to advance bioprinting. Adv Healthcare Mater.
doi: 10.1038/nbt.2989 2020;9(15):1901798.
doi: 10.1002/adhm.201901798
92. Moradi E, Jalili-Firoozinezhad S, Solati-Hashjin M.
Microfluidic organ-on-a-chip models of human liver tissue. 105. Chimene D, Lennox KK, Kaunas RR, Gaharwar AK.
Acta Biomater. 2020;116:67-83. Advanced bioinks for 3D printing: a materials science
doi: 10.1016/j.actbio.2020.08.041 perspective. Ann Biomed Eng. 2016;44(6):2090-2102.
93. Rennert K, Steinborn S, Gröger M, et al. A microfluidically doi: 10.1007/s10439-016-1638-y
perfused three dimensional human liver model. Biomaterials. 106. Heinrich MA, Liu W, Jimenez A, et al. 3D bioprinting:
2015;71:119-131. from benches to translational applications. Small.
doi: 10.1016/j.biomaterials.2015.08.043 2019;15(23):1805510.
94. Siwczak F, Cseresnyes Z, Hassan MIA, et al. Human doi: 10.1002/smll.201805510
macrophage polarization determines bacterial persistence 107. Malda J, Visser J, Melchels FP, et al. 25th anniversary
of Staphylococcus aureus in a liver-on-chip-based infection article: engineering hydrogels for biofabrication. Adv Mater.
model. Biomaterials. 2022;287:121632. 2013;25(36):5011-5028.
doi: 10.1016/j.biomaterials.2022.121632 doi: 10.1002/adma.201302042
95. Jang K-J, Otieno MA, Ronxhi J, et al. Reproducing human 108. Lou J, Mooney DJ. Chemical strategies to engineer hydrogels
and cross-species drug toxicities using a Liver-Chip. Sci for cell culture. Nat Rev Chem. 2022;6(10):726-744.
Transl Med. 2019;11(517):eaax5516. doi: 10.1038/s41570-022-00420-7
doi: 10.1126/scitranslmed.aax5516
109. Chaudhuri O, Cooper-White J, Janmey PA, Mooney DJ,
96. Nawroth JC, Petropolis DB, Manatakis DV, et al. Modeling Shenoy VB. Effects of extracellular matrix viscoelasticity
alcohol-associated liver disease in a human Liver-Chip. Cell on cellular behaviour. Nature. 2020;584(7822):
Rep. 2021;36(3):109393. 535-546.
doi: 10.1016/j.celrep.2021.109393 doi: 10.1038/s41586-020-2612-2
97. Ewart L, Apostolou A, Briggs SA, et al. Performance 110. Rizwan M, Ling C, Guo C, et al. Viscoelastic notch
assessment and economic analysis of a human Liver-Chip signaling hydrogel induces liver bile duct organoid
for predictive toxicology. Commun Med. 2022;2(1):154. growth and morphogenesis. Adv Healthc Mater. 2022;
doi: 10.1038/s43856-022-00209-1 11(23):2200880.
98. Du K, Li S, Li C, et al. Modeling nonalcoholic fatty liver doi: 10.1002/adhm.202200880
disease on a liver lobule chip with dual blood supply. Acta 111. Murphy SV, Atala A. 3D bioprinting of tissues and organs.
Biomater. 2021;134:228-239. Nat Biotechnol. 2014;32(8):773-785.
doi: 10.1016/j.actbio.2021.07.013 doi: 10.1038/nbt.2958
99. Hong G, Kim J, Oh H, et al. Production of multiple cell-laden 112. Vasconcelos DP, Águas AP, Barbosa MA, Pelegrín P, Barbosa
microtissue spheroids with a biomimetic hepatic-lobule-like JN. The inflammasome in host response to biomaterials:
structure. Adv Mater. 2021;33(36):2102624. bridging inflammation and tissue regeneration. Acta
doi: 10.1002/adma.202102624 Biomater. 2019;83:1-12.
100. Vunjak-Novakovic G, Ronaldson-Bouchard K, Radisic doi: 10.1016/j.actbio.2018.09.056
M. Organs-on-a-chip models for biological research. Cell. 113. Levato R, Jungst T, Scheuring RG, Blunk T, Groll J, Malda
2021;184(18):4597-4611. J. From shape to function: the next step in bioprinting. Adv
doi: 10.1016/j.cell.2021.08.005 Mater. 2020;32(12):1906423.
101. Ehrlich A, Duche D, Ouedraogo G, Nahmias Y. Challenges doi: 10.1002/adma.201906423
and opportunities in the design of liver-on-chip 114. Wang Y, Cui C-B, Yamauchi M, et al. Lineage restriction
microdevices. Annu Rev Biomed Eng. 2019;21:219-239. of human hepatic stem cells to mature fates is made
doi: 10.1146/annurev-bioeng-060418-052305
efficient by tissue-specific biomatrix scaffolds. Hepatology.
102. Moroni L, Burdick JA, Highley C, et al. Biofabrication 2011;53(1):293-305.
strategies for 3D in vitro models and regenerative medicine. doi: 10.1002/hep.24012
Nat Rev Mater. 2018;3(5):21-37. 115. Nichol JW, Koshy ST, Bae H, Hwang CM, Yamanlar S,
doi: 10.1038/s41578-018-0006-y
Khademhosseini A. Cell-laden microengineered gelatin
103. Daly AC, Prendergast ME, Hughes AJ, Burdick JA. methacrylate hydrogels. Biomaterials. 2010;31(21):
Bioprinting for the biologist. Cell. 2021;184(1):18-32. 5536-5544.
doi: 10.1016/j.cell.2020.12.002 doi: 10.1016/j.biomaterials.2010.03.064
Volume 10 Issue 5 (2024) 147 doi: 10.36922/ijb.3819

