Page 153 - IJB-10-5
P. 153
International Journal of Bioprinting Liver printing: from structure to application
40. Banales JM, Huebert RC, Karlsen T, Strazzabosco M, 53. Liang Y, Kaneko K, Xin B, et al. Temporal analyses of
LaRusso NF, Gores GJ. Cholangiocyte pathobiology. Nat Rev postnatal liver development and maturation by single-cell
Gastroenterol Hepatol. 2019;16(5):269-281. transcriptomics. Dev Cell. 2022;57(3):398-414.e5.
doi: 10.1038/s41575-019-0125-y doi: 10.1016/j.devcel.2022.01.004
41. Tabibian JH, Masyuk AI, Masyuk TV, O’Hara SP, LaRusso 54. Alison M, Islam S, Lim S. Stem cells in liver regeneration,
NF. Physiology of cholangiocytes. Compr Physiol. 2013;3(1): fibrosis and cancer: the good, the bad and the ugly. J Pathol.
541-565. 2009;217(2):282-298.
doi: 10.1002/cphy.c120019 doi: 10.1002/path.2453
42. Cervantes-Alvarez E, Wang Y, Collin de l’Hortet A, Guzman- 55. Miyajima A, Tanaka M, Itoh T. Stem/Progenitor cells
Lepe J, Zhu J, Takeishi K. Current strategies to generate in liver development, homeostasis, regeneration, and
mature human induced pluripotent stem cells derived reprogramming. Cell Stem Cell. 2014;14(5):561-574.
cholangiocytes and future applications. Organogenesis. doi: 10.1016/j.stem.2014.04.010
2017;13(1):1-15. 56. Michalopoulos GK. Liver regeneration. J Cell Physiol.
doi: 10.1080/15476278.2016.1278133
2007;213(2):286-300.
43. Sampaziotis F, Cardoso de Brito M, Madrigal P, et al. doi: 10.1002/jcp.21172
Cholangiocytes derived from human induced pluripotent 57. Miyaoka Y, Ebato K, Kato H, Arakawa S, Shimizu S,
stem cells for disease modeling and drug validation. Nat Miyajima A. Hypertrophy and unconventional cell division
Biotechnol. 2015;33(8):845-852. of hepatocytes underlie liver regeneration. Curr Biol.
doi: 10.1038/nbt.3275
2012;22(13):1166-1175.
44. Ogawa M, Jiang J-X, Xia S, et al. Generation of functional doi: 10.1016/j.cub.2012.05.016
ciliated cholangiocytes from human pluripotent stem cells. 58. Devarbhavi H, Asrani SK, Arab JP, Nartey YA, Pose E,
Nat Commun. 2021;12(1):6504. Kamath PS. Global burden of liver disease: 2023 update. J
doi: 10.1038/s41467-021-26764-0
Hepatol. 2023;79(2):516-537.
45. Kamm DR, McCommis KS. Hepatic stellate cells in doi: 10.1016/j.jhep.2023.03.017
physiology and pathology. J Physiol. 2022;600(8): 59. Bhatia SN, Underhill GH, Zaret KS, Fox IJ. Cell and
1825-1837. tissue engineering for liver disease. Sci Transl Med.
doi: 10.1113/jp281061
2014;6(245):245sr2.
46. Tsuchida T, Friedman SL. Mechanisms of hepatic stellate doi: 10.1126/scitranslmed.3005975
cell activation. Nat Rev Gastroenterol Hepatol. 2017;14(7): 60. Sun Y, Chang J, Liu X, Liu C. Mortality trends of liver
397-411. diseases in mainland China over three decades: an age-
doi: 10.1038/nrgastro.2017.38
period-cohort analysis. BMJ Open. 2019;9(11):e029793.
47. Krenkel O, Tacke F. Liver macrophages in tissue homeostasis doi: 10.1136/bmjopen-2019-029793
and disease. Nat Rev Immunol. 2017;17(5):306-321. 61. Mohiuddin MM, Singh AK, Scobie L, et al. Graft dysfunction
doi: 10.1038/nri.2017.11
in compassionate use of genetically engineered pig-to-
48. Pollard JW. Trophic macrophages in development and human cardiac xenotransplantation: a case report. Lancet.
disease. Nat Rev Immunol. 2009;9(4):259-270. 2023;402(10399):397-410.
doi: 10.1038/nri2528 doi: 10.1016/S0140-6736(23)00775-4
49. Zong Y, Stanger BZ. Molecular mechanisms of liver and 62. Mallapaty S, Kozlov M. First pig kidney transplant in a person:
bile duct development. Wiley Interdiscip Rev Dev Biol. what it means for the future. Nature. 2024;628(8006):13-14.
2012;1(5):643-655. doi: 10.1038/d41586-024-00879-y
doi: 10.1002/wdev.47
63. Sun Z, Yuan X, Wu J, et al. Hepatocyte transplantation:
50. Si-Tayeb K, Lemaigre FP, Duncan SA. Organogenesis and the progress and the challenges. Hepatol Commun.
development of the liver. Dev Cell. 2010;18(2):175-189. 2023;7(10):e0266.
doi: 10.1016/j.devcel.2010.01.011 doi: 10.1097/hc9.0000000000000266
51. Gordillo M, Evans T, Gouon-Evans V. Orchestrating liver 64. Struecker B, Raschzok N, Sauer IM. Liver support strategies:
development. Development. 2015;142(12):2094-2108. cutting-edge technologies. Nat Rev Gastroenterol Hepatol.
doi: 10.1242/dev.114215 2014;11(3):166-176.
doi: 10.1038/nrgastro.2013.204
52. Yang L, Li L-C, Lamaoqiezhong, et al. The contributions of
mesoderm-derived cells in liver development. Semin Cell 65. Millis JM, Losanoff JE. Technology Insight: liver support
Dev Biol. 2019;92:63-76. systems. Nat Clin Pract Gastroenterol Hepatol. 2005;2(9):
doi: 10.1016/j.semcdb.2018.09.003 398-405.
Volume 10 Issue 5 (2024) 145 doi: 10.36922/ijb.3819

