Page 156 - IJB-10-5
P. 156
International Journal of Bioprinting Liver printing: from structure to application
116. Mouw JK, Ou G, Weaver VM. Extracellular matrix 128. Jiang S, Zhuang Y, Cai M, Wang X, Lin K. Decellularized
assembly: a multiscale deconstruction. Nat Rev Mol Cell extracellular matrix: a promising strategy for skin repair and
Biol. 2014;15(12):771-785. regeneration. Eng Regenerat. 2023;4(4):357-374.
doi: 10.1038/nrm3902 doi: 10.1016/j.engreg.2023.05.001
117. Donderwinkel I, van Hest JCM, Cameron NR. Bio-inks 129. Deng B, Ma Y, Huang J, et al. Revitalizing liver function
for 3D bioprinting: recent advances and future prospects. in mice with liver failure through transplantation of
Polymer Chem. 2017;8(31):4451-4471. 3D-bioprinted liver with expanded primary hepatocytes. Sci
doi: 10.1039/C7PY00826K Adv. 2024;10(23):eado1550.
118. Lee JW, Choi Y-J, Yong W-J, et al. Development of a 3D cell doi: 10.1126/sciadv.ado1550
printed construct considering angiogenesis for liver tissue 130. Lutolf MP, Lauer-Fields JL, Schmoekel HG, et al. Synthetic
engineering. Biofabrication. 2016;8(1):015007. matrix metalloproteinase-sensitive hydrogels for the
doi: 10.1088/1758-5090/8/1/015007 conduction of tissue regeneration: engineering cell-invasion
119. Reizabal A, Costa CM, Pérez-Álvarez L, Vilas-Vilela JL, characteristics. Proc Natl Acad Sci U S A. 2003;100(9):
Lanceros-Méndez S. Silk fibroin as sustainable advanced 5413-5418.
material: material properties and characteristics, processing, doi: 10.1073/pnas.0737381100
and applications. Adv Funct Mater. 2023;33(3):2210764. 131. Kolesky DB, Homan KA, Skylar-Scott MA, Lewis JA. Three-
doi: 10.1002/adfm.202210764 dimensional bioprinting of thick vascularized tissues. Proc
120. Maity C, Das N. Alginate-based smart materials and their Natl Acad Sci U S A. 2016;113(12):3179-3184.
application: recent advances and perspectives. Top Curr doi: 10.1073/pnas.1521342113
Chem (Cham). 2021;380(1):3. 132. Gu Q, Tomaskovic-Crook E, Wallace GG, Crook JM. 3D
doi: 10.1007/s41061-021-00360-8 bioprinting human induced pluripotent stem cell constructs
121. Spearman BS, Agrawal NK, Rubiano A, Simmons CS, for in situ cell proliferation and successive multilineage
Mobini S, Schmidt CE. Tunable methacrylated hyaluronic differentiation. Adv Healthc Mater. 2017;6(17):1700175.
acid-based hydrogels as scaffolds for soft tissue engineering doi: 10.1002/adhm.201700175
applications. J Biomed Mater Res A. 2020;108(2):279-291. 133. Andersson TB, Kanebratt KP, Kenna JG. The HepaRG
doi: 10.1002/jbm.a.36814 cell line: a unique in vitro tool for understanding drug
122. Ma X, Qu X, Zhu W, et al. Deterministically patterned metabolism and toxicology in human. Expert Opin Drug
biomimetic human iPSC-derived hepatic model via rapid Metab Toxicol. 2012;8(7):909-920.
3D bioprinting. Proc Natl Acad Sci U S A. 2016;113(8): doi: 10.1517/17425255.2012.685159
2206-2211. 134. Cerec V, Glaise D, Garnier D, et al. Transdifferentiation
doi: 10.1073/pnas.1524510113 of hepatocyte-like cells from the human hepatoma
123. Baier Leach J, Bivens KA, Patrick CW, Jr., Schmidt CE. HepaRG cell line through bipotent progenitor. Hepatology.
Photocrosslinked hyaluronic acid hydrogels: natural, 2007;45(4):957-967.
biodegradable tissue engineering scaffolds. Biotechnol doi: 10.1002/hep.21536
Bioeng. 2003;82(5):578-589. 135. Gripon P, Rumin S, Urban S, et al. Infection of a human
doi: 10.1002/bit.10605 hepatoma cell line by hepatitis B virus. Proc Natl Acad Sci U
124. Zarrintaj P, Manouchehri S, Ahmadi Z, et al. Agarose- S A. 2002;99(24):15655-15660.
based biomaterials for tissue engineering. Carbohydr Polym. doi: 10.1073/pnas.232137699
2018;187:66-84. 136. Higuchi Y, Kawai K, Yamazaki H, et al. The human
doi: 10.1016/j.carbpol.2018.01.060 hepatic cell line HepaRG as a possible cell source for the
125. López-Marcial GR, Zeng AY, Osuna C, Dennis J, García generation of humanized liver TK-NOG mice. Xenobiotica.
JM, O’Connell GD. Agarose-based hydrogels as suitable 2014;44(2):146-153.
bioprinting materials for tissue engineering. ACS Biomater doi: 10.3109/00498254.2013.836257
Sci Eng. 2018;4(10):3610-3616. 137. Laurent V, Glaise D, Nübel T, Gilot D, Corlu A, Loyer P.
doi: 10.1021/acsbiomaterials.8b00903 Highly efficient SiRNA and gene transfer into hepatocyte-
126. Hasebe Y, Okumura N, Koh T, et al. Formation of rat like HepaRG cells and primary human hepatocytes: new
hepatocyte spheroids on agarose. Hepatol Res. 2005;32(2): means for drug metabolism and toxicity studies. Methods
89-95. Mol Biol. 2013;987:295-314.
doi: 10.1016/j.hepres.2005.03.012 doi: 10.1007/978-1-62703-321-3_25
127. Passaniti A, Kleinman HK, Martin GR. Matrigel: history/ 138. Koike H, Iwasawa K, Ouchi R, et al. Engineering human
background, uses, and future applications. J Cell Commun hepato-biliary-pancreatic organoids from pluripotent stem
Signal. 2022;16(4):621-626. cells. Nat Protoc. 2021;16(2):919-936.
doi: 10.1007/s12079-021-00643-1 doi: 10.1038/s41596-020-00441-w
Volume 10 Issue 5 (2024) 148 doi: 10.36922/ijb.3819

