Page 156 - IJB-10-5
P. 156

International Journal of Bioprinting                               Liver printing: from structure to application




            116. Mouw JK, Ou G, Weaver VM. Extracellular matrix   128. Jiang S, Zhuang Y, Cai M, Wang X, Lin K. Decellularized
               assembly:  a  multiscale  deconstruction.  Nat  Rev  Mol  Cell   extracellular matrix: a promising strategy for skin repair and
               Biol. 2014;15(12):771-785.                         regeneration. Eng Regenerat. 2023;4(4):357-374.
               doi: 10.1038/nrm3902                               doi: 10.1016/j.engreg.2023.05.001
            117. Donderwinkel I, van Hest JCM, Cameron NR. Bio-inks   129. Deng B, Ma Y, Huang J, et al. Revitalizing liver function
               for 3D bioprinting: recent advances and future prospects.   in mice with liver failure through transplantation of
               Polymer Chem. 2017;8(31):4451-4471.                3D-bioprinted liver with expanded primary hepatocytes. Sci
               doi: 10.1039/C7PY00826K                            Adv. 2024;10(23):eado1550.
            118. Lee JW, Choi Y-J, Yong W-J, et al. Development of a 3D cell      doi: 10.1126/sciadv.ado1550
               printed construct considering angiogenesis for liver tissue   130. Lutolf MP, Lauer-Fields JL, Schmoekel HG, et al. Synthetic
               engineering. Biofabrication. 2016;8(1):015007.     matrix metalloproteinase-sensitive hydrogels for the
               doi: 10.1088/1758-5090/8/1/015007                  conduction of tissue regeneration: engineering cell-invasion
            119. Reizabal A, Costa CM, Pérez-Álvarez L, Vilas-Vilela JL,   characteristics.  Proc Natl Acad Sci U S A. 2003;100(9):
               Lanceros-Méndez S. Silk fibroin as sustainable advanced   5413-5418.
               material: material properties and characteristics, processing,      doi: 10.1073/pnas.0737381100
               and applications. Adv Funct Mater. 2023;33(3):2210764.  131. Kolesky DB, Homan KA, Skylar-Scott MA, Lewis JA. Three-
               doi: 10.1002/adfm.202210764                        dimensional bioprinting of thick vascularized tissues. Proc
            120. Maity C, Das N. Alginate-based smart materials and their   Natl Acad Sci U S A. 2016;113(12):3179-3184.
               application: recent advances and perspectives.  Top Curr      doi: 10.1073/pnas.1521342113
               Chem (Cham). 2021;380(1):3.                     132. Gu  Q,  Tomaskovic-Crook  E,  Wallace  GG,  Crook  JM.  3D
               doi: 10.1007/s41061-021-00360-8                    bioprinting human induced pluripotent stem cell constructs
            121. Spearman BS, Agrawal NK, Rubiano A, Simmons CS,   for in situ cell proliferation and successive multilineage
               Mobini S, Schmidt CE. Tunable methacrylated hyaluronic   differentiation. Adv Healthc Mater. 2017;6(17):1700175.
               acid-based hydrogels as scaffolds for soft tissue engineering      doi: 10.1002/adhm.201700175
               applications. J Biomed Mater Res A. 2020;108(2):279-291.  133. Andersson TB, Kanebratt KP, Kenna JG. The HepaRG
               doi: 10.1002/jbm.a.36814                           cell line: a unique in vitro tool for understanding drug
            122. Ma X, Qu X, Zhu W, et al. Deterministically patterned   metabolism and toxicology in human.  Expert Opin Drug
               biomimetic human iPSC-derived hepatic model via rapid   Metab Toxicol. 2012;8(7):909-920.
               3D bioprinting.  Proc Natl Acad Sci U S A. 2016;113(8):      doi: 10.1517/17425255.2012.685159
               2206-2211.                                      134. Cerec V, Glaise D, Garnier D, et al. Transdifferentiation
               doi: 10.1073/pnas.1524510113                       of hepatocyte-like cells from the human hepatoma
            123. Baier Leach J, Bivens KA, Patrick CW, Jr., Schmidt CE.   HepaRG cell line through bipotent progenitor. Hepatology.
               Photocrosslinked hyaluronic acid hydrogels: natural,   2007;45(4):957-967.
               biodegradable tissue engineering scaffolds.  Biotechnol      doi: 10.1002/hep.21536
               Bioeng. 2003;82(5):578-589.                     135. Gripon  P, Rumin S,  Urban  S, et  al. Infection  of a  human
               doi: 10.1002/bit.10605                             hepatoma cell line by hepatitis B virus. Proc Natl Acad Sci U
            124. Zarrintaj P, Manouchehri S, Ahmadi Z, et al. Agarose-  S A. 2002;99(24):15655-15660.
               based biomaterials for tissue engineering. Carbohydr Polym.      doi: 10.1073/pnas.232137699
               2018;187:66-84.                                 136. Higuchi Y, Kawai K, Yamazaki H, et al. The human
               doi: 10.1016/j.carbpol.2018.01.060                 hepatic cell line HepaRG as a possible cell source for the
            125. López-Marcial GR, Zeng AY, Osuna C, Dennis J, García   generation of humanized liver TK-NOG mice. Xenobiotica.
               JM, O’Connell GD. Agarose-based hydrogels as suitable   2014;44(2):146-153.
               bioprinting materials for tissue engineering. ACS Biomater      doi: 10.3109/00498254.2013.836257
               Sci Eng. 2018;4(10):3610-3616.                  137. Laurent  V, Glaise D, Nübel  T,  Gilot D,  Corlu  A, Loyer P.
               doi: 10.1021/acsbiomaterials.8b00903               Highly efficient SiRNA and gene transfer into hepatocyte-
            126. Hasebe Y, Okumura N, Koh T, et al. Formation of rat   like HepaRG cells and primary human hepatocytes: new
               hepatocyte spheroids on agarose. Hepatol Res. 2005;32(2):   means for drug metabolism and toxicity studies. Methods
               89-95.                                             Mol Biol. 2013;987:295-314.
               doi: 10.1016/j.hepres.2005.03.012                  doi: 10.1007/978-1-62703-321-3_25
            127. Passaniti A, Kleinman HK, Martin GR. Matrigel: history/  138. Koike H, Iwasawa K, Ouchi R, et al. Engineering human
               background, uses, and future applications. J Cell Commun   hepato-biliary-pancreatic organoids from pluripotent stem
               Signal. 2022;16(4):621-626.                        cells. Nat Protoc. 2021;16(2):919-936.
               doi: 10.1007/s12079-021-00643-1                    doi: 10.1038/s41596-020-00441-w

            Volume 10 Issue 5 (2024)                       148                                doi: 10.36922/ijb.3819
   151   152   153   154   155   156   157   158   159   160   161