Page 157 - IJB-10-5
P. 157
International Journal of Bioprinting Liver printing: from structure to application
139. Koike H, Iwasawa K, Ouchi R, et al. Modelling human and automatic inkjet cell printing. Adv Healthc Mater.
hepato-biliary-pancreatic organogenesis from the foregut- 2013;2(4):534-539.
midgut boundary. Nature. 2019;574(7776):112-116. doi: 10.1002/adhm.201200299
doi: 10.1038/s41586-019-1598-0
152. Jian H, Li X, Dong Q, Tian S, Bai S. In vitro construction of liver
140. Hannan NR, Segeritz CP, Touboul T, Vallier L. Production of organoids with biomimetic lobule structure by a multicellular
hepatocyte-like cells from human pluripotent stem cells. Nat 3D bioprinting strategy. Cell Prolif. 2023;56(5):e13465.
Protoc. 2013;8(2):430-437. doi: 10.1111/cpr.13465
doi: 10.1038/nprot.2012.153
153. Gu Z, Fu J, Lin H, He Y. Development of 3D bioprinting:
141. Dao Thi VL, Wu X, Belote RL, et al. Stem cell-derived from printing methods to biomedical applications. Asian J
polarized hepatocytes. Nat Commun. 2020;11(1):1677. Pharm Sci. 2020;15(5):529-557.
doi: 10.1038/s41467-020-15337-2 doi: 10.1016/j.ajps.2019.11.003
142. Lee H, Chae S, Kim JY, et al. Cell-printed 3D liver-on-a-chip 154. Dou C, Perez V, Qu J, Tsin A, Xu B, Li J. A State-of-the-Art
possessing a liver microenvironment and biliary system. review of laser-assisted bioprinting and its future research
Biofabrication. 2019;11(2):025001. trends. ChemBioEng Rev. 2021;8(5):517-534.
doi: 10.1088/1758-5090/aaf9fa doi: 10.1002/cben.202000037
143. Liu Q, Mille LS, Villalobos C, et al. 3D-bioprinted 155. Zhu W, Qu X, Zhu J, et al. Direct 3D bioprinting
cholangiocarcinoma-on-a-chip model for evaluating drug of prevascularized tissue constructs with complex
responses. Bio-Design Manuf. 2023;6(4):373-389. microarchitecture. Biomaterials. 2017;124:106-115.
doi: 10.1007/s42242-022-00229-9 doi: 10.1016/j.biomaterials.2017.01.042
144. Hafiz EOA, Bulutoglu B, Mansy SS, et al. Development of 156. Wang M, Li W, Hao J, et al. Molecularly cleavable bioinks
liver microtissues with functional biliary ductular network. facilitate high-performance digital light processing-based
Biotechnol Bioeng. 2021;118(1):17-29. bioprinting of functional volumetric soft tissues. Nat
doi: 10.1002/bit.27546 Commun. 2022;13(1):3317.
doi: 10.1038/s41467-022-31002-2
145. Stevens KR, Scull MA, Ramanan V, et al. In situ expansion of
engineered human liver tissue in a mouse model of chronic 157. Jing S, Lian L, Hou Y, et al. Advances in volumetric
liver disease. Sci Transl Med. 2017;9(399):eaah5505. bioprinting. Biofabrication. 2024;16(1):012004.
doi: 10.1126/scitranslmed.aah5505 doi: 10.1088/1758-5090/ad0978
146. Grigoryan B, Paulsen SJ, Corbett DC, et al. Multivascular 158. Bernal PN, Bouwmeester M, Madrid-Wolff J, et al.
networks and functional intravascular topologies within Volumetric bioprinting of organoids and optically tuned
biocompatible hydrogels. Science. 2019;364(6439): hydrogels to build liver-like metabolic biofactories. Adv
458-464. Mater. 2022;34(15):2110054.
doi: 10.1126/science.aav9750 doi: 10.1002/adma.202110054
147. Peng X, Janićijević Ž, Lemm S, et al. Impact of viscosity on 159. Miller JS, Stevens KR, Yang MT, et al. Rapid casting of
human hepatoma spheroids in soft core–shell microcapsules. patterned vascular networks for perfusable engineered
Adv Healthc Mater. 2024;13(11):2302609. three-dimensional tissues. Nat Mater. 2012;11(9):768-774.
doi: 10.1002/adhm.202302609 doi: 10.1038/nmat3357
148. Foyt DA, Norman MDA, Yu TTL, Gentleman E. 160. Liu X, Wang X, Zhang L, et al. 3D liver tissue model with
Exploiting advanced hydrogel technologies to address key branched vascular networks by multimaterial bioprinting.
challenges in regenerative medicine. Adv Healthc Mater. Adv Healthc Mater. 2021;10(23):2101405.
2018;7(8):1700939. doi: 10.1002/adhm.202101405
doi: 10.1002/adhm.201700939
161. Yang H, Sun L, Pang Y, et al. Three-dimensional bioprinted
149. Bishop ES, Mostafa S, Pakvasa M, et al. 3-D bioprinting hepatorganoids prolong survival of mice with liver failure.
technologies in tissue engineering and regenerative medicine: Gut. 2021;70(3):567-574.
current and future trends. Genes Dis. 2017;4(4):185-195. doi: 10.1136/gutjnl-2019-319960
doi: 10.1016/j.gendis.2017.10.002
162. McCormack A, Highley CB, Leslie NR, Melchels FPW.
150. Xu C, Zhang M, Huang Y, Ogale A, Fu J, Markwald RR. 3D printing in suspension baths: keeping the promises of
Study of droplet formation process during drop-on- bioprinting afloat. Trends Biotechnol. 2020;38(6):584-593.
demand inkjetting of living cell-Laden Bioink. Langmuir. doi: 10.1016/j.tibtech.2019.12.020
2014;30(30):9130-9138. 163. Lee A, Hudson AR, Shiwarski DJ, et al. 3D bioprinting of
doi: 10.1021/la501430x
collagen to rebuild components of the human heart. Science.
151. Matsusaki M, Sakaue K, Kadowaki K, Akashi M. Three- 2019;365(6452):482-487.
dimensional human tissue chips fabricated by rapid doi: 10.1126/science.aav9051
Volume 10 Issue 5 (2024) 149 doi: 10.36922/ijb.3819

