Page 157 - IJB-10-5
P. 157

International Journal of Bioprinting                               Liver printing: from structure to application




            139. Koike H, Iwasawa K, Ouchi R, et al. Modelling human   and  automatic  inkjet  cell  printing.  Adv  Healthc  Mater.
               hepato-biliary-pancreatic organogenesis from the foregut-  2013;2(4):534-539.
               midgut boundary. Nature. 2019;574(7776):112-116.     doi: 10.1002/adhm.201200299
               doi: 10.1038/s41586-019-1598-0
                                                               152.  Jian H, Li X, Dong Q, Tian S, Bai S. In vitro construction of liver
            140. Hannan NR, Segeritz CP, Touboul T, Vallier L. Production of   organoids with biomimetic lobule structure by a multicellular
               hepatocyte-like cells from human pluripotent stem cells. Nat   3D bioprinting strategy. Cell Prolif. 2023;56(5):e13465.
               Protoc. 2013;8(2):430-437.                         doi: 10.1111/cpr.13465
               doi: 10.1038/nprot.2012.153
                                                               153. Gu Z, Fu J, Lin H, He Y. Development of 3D bioprinting:
            141. Dao Thi VL, Wu X, Belote RL, et al. Stem cell-derived   from printing methods to biomedical applications. Asian J
               polarized hepatocytes. Nat Commun. 2020;11(1):1677.  Pharm Sci. 2020;15(5):529-557.
               doi: 10.1038/s41467-020-15337-2                    doi: 10.1016/j.ajps.2019.11.003
            142. Lee H, Chae S, Kim JY, et al. Cell-printed 3D liver-on-a-chip   154. Dou C, Perez V, Qu J, Tsin A, Xu B, Li J. A State-of-the-Art
               possessing a liver microenvironment and biliary system.   review of laser-assisted bioprinting and its future research
               Biofabrication. 2019;11(2):025001.                 trends. ChemBioEng Rev. 2021;8(5):517-534.
               doi: 10.1088/1758-5090/aaf9fa                      doi: 10.1002/cben.202000037
            143. Liu Q, Mille LS, Villalobos C, et al. 3D-bioprinted   155. Zhu  W,  Qu  X,  Zhu  J,  et  al.  Direct  3D  bioprinting
               cholangiocarcinoma-on-a-chip model for  evaluating  drug   of prevascularized tissue constructs with complex
               responses. Bio-Design Manuf. 2023;6(4):373-389.    microarchitecture. Biomaterials. 2017;124:106-115.
               doi: 10.1007/s42242-022-00229-9                    doi: 10.1016/j.biomaterials.2017.01.042
            144. Hafiz EOA, Bulutoglu B, Mansy SS, et al. Development of   156. Wang M, Li W, Hao J, et al. Molecularly cleavable bioinks
               liver microtissues with functional biliary ductular network.   facilitate high-performance digital light processing-based
               Biotechnol Bioeng. 2021;118(1):17-29.              bioprinting of functional volumetric soft tissues.  Nat
               doi: 10.1002/bit.27546                             Commun. 2022;13(1):3317.
                                                                  doi: 10.1038/s41467-022-31002-2
            145. Stevens KR, Scull MA, Ramanan V, et al. In situ expansion of
               engineered human liver tissue in a mouse model of chronic   157. Jing S, Lian L, Hou Y, et al. Advances in volumetric
               liver disease. Sci Transl Med. 2017;9(399):eaah5505.  bioprinting. Biofabrication. 2024;16(1):012004.
               doi: 10.1126/scitranslmed.aah5505                  doi: 10.1088/1758-5090/ad0978
            146. Grigoryan B, Paulsen SJ, Corbett DC, et al. Multivascular   158. Bernal PN, Bouwmeester M, Madrid-Wolff J, et al.
               networks and functional intravascular topologies within   Volumetric bioprinting of organoids and optically tuned
               biocompatible  hydrogels.  Science.  2019;364(6439):   hydrogels to build liver-like metabolic biofactories.  Adv
               458-464.                                           Mater. 2022;34(15):2110054.
               doi: 10.1126/science.aav9750                       doi: 10.1002/adma.202110054
            147. Peng X, Janićijević Ž, Lemm S, et al. Impact of viscosity on   159. Miller JS, Stevens KR, Yang MT, et al. Rapid casting of
               human hepatoma spheroids in soft core–shell microcapsules.   patterned  vascular  networks  for  perfusable  engineered
               Adv Healthc Mater. 2024;13(11):2302609.            three-dimensional tissues. Nat Mater. 2012;11(9):768-774.
               doi: 10.1002/adhm.202302609                        doi: 10.1038/nmat3357
            148. Foyt DA, Norman MDA, Yu TTL, Gentleman E.     160. Liu X, Wang X, Zhang L, et al. 3D liver tissue model with
               Exploiting advanced hydrogel technologies to address key   branched vascular networks by multimaterial bioprinting.
               challenges in regenerative medicine.  Adv Healthc Mater.   Adv Healthc Mater. 2021;10(23):2101405.
               2018;7(8):1700939.                                 doi: 10.1002/adhm.202101405
               doi: 10.1002/adhm.201700939
                                                               161. Yang H, Sun L, Pang Y, et al. Three-dimensional bioprinted
            149. Bishop ES, Mostafa S, Pakvasa M, et al. 3-D bioprinting   hepatorganoids prolong survival of mice with liver failure.
               technologies in tissue engineering and regenerative medicine:   Gut. 2021;70(3):567-574.
               current and future trends. Genes Dis. 2017;4(4):185-195.     doi: 10.1136/gutjnl-2019-319960
               doi: 10.1016/j.gendis.2017.10.002
                                                               162. McCormack A, Highley CB, Leslie NR, Melchels FPW.
            150. Xu C, Zhang M, Huang Y, Ogale A, Fu J, Markwald RR.   3D printing in suspension baths: keeping the promises of
               Study of droplet formation process during drop-on-  bioprinting afloat. Trends Biotechnol. 2020;38(6):584-593.
               demand inkjetting of living cell-Laden Bioink.  Langmuir.      doi: 10.1016/j.tibtech.2019.12.020
               2014;30(30):9130-9138.                          163. Lee A, Hudson AR, Shiwarski DJ, et al. 3D bioprinting of
               doi: 10.1021/la501430x
                                                                  collagen to rebuild components of the human heart. Science.
            151. Matsusaki M, Sakaue K, Kadowaki K, Akashi M. Three-  2019;365(6452):482-487.
               dimensional  human  tissue  chips  fabricated  by  rapid      doi: 10.1126/science.aav9051


            Volume 10 Issue 5 (2024)                       149                                doi: 10.36922/ijb.3819
   152   153   154   155   156   157   158   159   160   161   162