Page 223 - IJB-10-5
P. 223

International Journal of Bioprinting                                     Biomimetic osteochondral scaffold




            38.  Little CJ, Bawolin NK, Chen X. Mechanical properties of   50.  Maia FR, Bastos AR, Oliveira JM, Correlo VM, Reis RL.
               natural cartilage and tissue-engineered constructs.  Tissue   Recent approaches towards bone tissue engineering. Bone.
               Eng Part B: Rev. 2011;17(4):213-227.               2022;154:116256.
               doi: 10.1089/ten.teb.2010.0572                     doi: 10.1016/j.bone.2021.116256
            39.  Keaveny TM, Hayes WC. A 20-year perspective on the   51.  Wasyłeczko M, Sikorska W, Chwojnowski A. Review of
               mechanical properties of trabecular bone.  J Biomech Eng.   synthetic and hybrid scaffolds in cartilage tissue engineering.
               1993;115(4B):534-542.                              Membranes (Basel). 2020;10(11):348.
               doi: 10.1115/1.2895536                             doi: 10.3390/membranes10110348
            40.  Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR. Biodegradable   52.  Wang C, Yue H, Huang W, et  al. Cryogenic 3D  printing
               and bioactive porous polymer/inorganic composite scaffolds   of heterogeneous scaffolds with gradient mechanical
               for bone tissue engineering.  Biomaterials. 2006;27(18):   strengths and  spatial delivery of  osteogenic peptide/TGF-
               3413-3431.                                         1 for osteochondral tissue regeneration.  Biofabrication.
               doi: 10.1016/j.biomaterials.2006.01.039            2020;12(2):025030.
                                                                  doi: 10.1088/1758-5090/ab7ab5
            41.  Zhang N, Wang Y, Zhang J, Guo J, He J. Controlled
               domain gels with a biomimetic gradient environment   53.  Li D, Guo Y, Lu H, et al. The effect of local delivery of
               for osteochondral tissue regeneration.  Acta Biomater.   adiponectin from biodegradable microsphere–scaffold
               2021;135:304-317.                                  composites on new bone formation in adiponectin knockout
               doi: 10.1016/j.actbio.2021.08.029                  mice. J Mater Chem B. 2016;4(27):4771-4779.
                                                                  doi: 10.1039/c6tb00704j
            42.  Yildirim N, Amanzhanova A, Kulzhanova G, Mukasheva F,
               Erisken C. Osteochondral interface: regenerative engineering   54.  Yu X, Tang X, Gohil SV, Laurencin CT. Biomaterials
               and challenges. ACS Biomater Sci Eng. 2023;9(3):1205-1223.  for bone regenerative engineering.  Adv  Healthc Mater.
               doi: 10.1021/acsbiomaterials.2c01321               2015;4(9):1268-1285.
                                                                  doi: 10.1002/adhm.201400760
            43.  Niu X, Li N, Du Z, Li X. Integrated gradient tissue-
               engineered osteochondral scaffolds: Challenges, current   55.  Salaris V, Leonés A, Lopez D, Kenny JM, Peponi L. Shape-
               efforts and future perspectives.  Bioact Mater. 2023;20:   memory materials via electrospinning: a review.  Polymers
               574-597.                                           (Basel). 2022;14(5):995.
               doi: 10.1016/j.bioactmat.2022.06.011               doi: 10.3390/polym14050995
            44.  Santos-Beato P, Midha S, Pitsillides AA, Miller A, Torii R,   56.  Pérez-Luna VH, González-Reynoso O. Encapsulation of
               Kalaskar DM. Biofabrication of the osteochondral unit   biological agents in hydrogels for therapeutic applications.
               and its applications: current and future directions for 3D   Gels. 2018;4(3):61.
               bioprinting. J Tissue Eng. 2022;13:20417314221133480.     doi: 10.3390/gels4030061
               doi: 10.1177/20417314221133480                  57.  Ryoo HM, Lee MH, Kim YJ. Critical molecular switches
            45.  Vyas C, Mishbak H, Cooper G, Peach C, Pereira RF, Bartolo P.   involved in BMP-2-induced osteogenic differentiation of
               Biological perspectives and current biofabrication strategies   mesenchymal cells. Gene. 2006;366(1):51-57.
               in osteochondral tissue engineering. Biomanufacturing Rev.      doi: 10.1016/j.gene.2005.10.011
               2020;5(1):2.                                    58.  Wu M, Chen F, Liu H, et al. Bioinspired sandwich-like
               doi: 10.1007/s40898-020-00008-y                    hybrid surface functionalized scaffold capable of regulating
            46.  Wang C, Huang W, Zhou Y, et al. 3D printing of bone tissue   osteogenesis,  angiogenesis,  and  osteoclastogenesis
               engineering scaffolds. Bioact Mater. 2020;5(1):82-91.  for robust bone regeneration.  Mater Today Bio. 2022;
               doi: 10.1016/j.bioactmat.2020.01.004               17:100458.
                                                                  doi: 10.1016/j.mtbio.2022.100458
            47.  Zaszczyńska A, Moczulska-Heljak M, Gradys A, Sajkiewicz
               P. Advances in 3D printing for tissue engineering. Materials   59.  Lu Q, Diao J, Wang Y, et al. 3D printed pore morphology
               (Basel). 2021;14(12):3149.                         mediates bone marrow stem cell behaviors via RhoA/ROCK2
               doi: 10.3390/ma14123149                            signaling pathway for accelerating bone regeneration. Bioact
                                                                  Mater. 2023;26:413-424.
            48.  Quan H, Zhang T, Xu H, Luo S, Nie J, Zhu X. Photo-curing      doi: 10.1016/j.bioactmat.2023.02.025
               3D printing technique and its challenges.  Bioact Mater.
               2020;5(1):110-115.                              60.  Bradley EW, Carpio LR, Newton AC, Westendorf JJ.
               doi: 10.1016/j.bioactmat.2019.12.003               Deletion of the PH-domain and Leucine-rich repeat
                                                                  protein phosphatase 1 (Phlpp1) increases fibroblast growth
            49.  Li Z, Xu M, Wang J, Zhang F. Recent advances in cryogenic 3D   factor (Fgf) 18 expression and promotes chondrocyte
               printing technologies. Adv Eng Mater. 2022;24(10):2200245.  proliferation*. J Biol Chem. 2015;290(26):16272-16280.
               doi: 10.1002/adem.202200245                        doi: 10.1074/jbc.m114.612937



            Volume 10 Issue 5 (2024)                       215                                doi: 10.36922/ijb.3229
   218   219   220   221   222   223   224   225   226   227   228