Page 368 - IJB-10-5
P. 368

International Journal of Bioprinting                                   Printing organoids in peptide matrices




            11.  Linnekamp JF, Hooff SRV, Prasetyanti PR, et al. Consensus   23.  Loo Y, Zhang S, Hauser CAE. From short peptides to
               molecular subtypes of colorectal cancer are recapitulated in   nanofibers to macromolecular assemblies in biomedicine.
               in vitro and in vivo models. Cell Death Differ. 2018;25(3):   Biotechnol Adv. 2012;30:593-603.
               616-633.                                           doi: 10.1016/j.biotechadv.2011.10.004
               doi: 10.1038/s41418-017-0011-5                  24.  Liu Y, Zhang L, Wei W. Effect of noncovalent interaction on
            12.  Sveen A, Bruun J, Eide PW, et al. Colorectal cancer consensus   the self-assembly of a designed peptide and its potential use
               molecular subtypes translated to preclinical models uncover   as a carrier for controlled bFGF release. Int J Nanomedicine.
               potentially targetable cancer cell dependencies. Clin Cancer   2017;12:659-670.
               Res. 2018;24(4):794-806.                           doi: 10.2147/IJN.S124523
               doi: 10.1158/1078-0432.CCR-17-1234              25.  Abdelrahman S, Alsanie WF, Khan ZN, et al. A Parkinson’s
            13.  Idris M, Alves MM, Hofstra RMW, Mahe MM, Melotte V.   disease  model composed  of 3D  bioprinted  dopaminergic
               Intestinal multicellular organoids to study colorectal cancer.   neurons within a biomimetic peptide scaffold. Biofabrication.
               Biochim Biophys Acta Rev Cancer. 2021;1876(2):188586.  2022;14(4):044103.
               doi: 10.1016/j.bbcan.2021.188586                   doi: 10.1088/1758-5090/ac7eec
            14.  Varga  OE,  Hansen  AK,  Sandøe  P,  Olsson  IA.  Validating   26.  Abdelrahman  S, Ge  R, Susapto  HH,  et  al.  The  impact  of
               animal models for preclinical research: a scientific and   mechanical cues on the metabolomic and transcriptomic
               ethical discussion. Altern Lab Anim. 2010;38(3):245-248.  profiles of human dermal fibroblasts cultured in ultrashort
               doi: 10.1177/026119291003800309                    self-assembling peptide 3D scaffolds.  ACS Nano.
                                                                  2023;17(15):14508-14531.
            15.  Date S, Sato T. Mini-gut organoids: reconstitution of the      doi: 10.1021/acsnano.3c01176
               stem cell niche. Annu Rev Cell Dev Biol. 2015;31:269-289.
               doi: 10.1146/annurev-cellbio-100814-125218      27.  Alzanbaki H, Moretti  M, Hauser  CAE.  Engineered
                                                                  microgels-their manufacturing and biomedical applications.
            16.  Sato T, Stange DE, Ferrante M, et al. Long-term expansion   Micromachines (Basel). 2021;12(1):45.
               of  epithelial  organoids  from  human  colon,  adenoma,      doi: 10.3390/mi12010045
               adenocarcinoma, and Barrett’s epithelium. Gastroenterology.
               2011;141(5):1762-1772.                          28.  Pérez-Pedroza R, Ávila-Ramirez A, Khan Z, Moreti M,
               doi: 10.1053/j.gastro.2011.07.050                  Hauser CAE. Supramolecular biopolymers for tissue
                                                                  engineering. Adv Polym Technol. 2021;2021:1-23.
            17.  Drost J, Clevers H. Organoids in cancer research. Nat Rev      doi: 10.1155/2021/8815006
               Cancer. 2018;18:407-418.
               doi: 10.1038/s41568-018-0007-6                  29.  Wang Y, Liu X, Ge R, et al. Peptide gel electrolytes for
                                                                  stabilized zn metal anodes. ACS Nano. 2024;18(1):164-177.
            18.  Maharjan S, Ma C, Singh B, et al. Advanced 3D imaging and      doi: 10.1021/acsnano.3c04414
               organoid bioprinting for biomedical research and therapeutic
               applications. Adv Drug Deliv Rev. 2024;208:115237.  30.  Bilalis P, Alrashoudi AΑ, Susapto HH, et al. Dipeptide-based
               doi: 10.1016/j.addr.2024.115237                    photoreactive instant glue for environmental and biomedical
                                                                  applications.  ACS Appl Mater Interfaces. 2023;15(40):
            19.  De Stefano P, Briatico-Vangosa F, Bianchi E, et al. Bioprinting   46710-46720.
               of matrigel scaffolds for cancer research. Polymers (Basel).      doi: 10.1021/acsami.3c10726
               2021;13(12):2026.
               doi: 10.3390/polym13122026                      31.  Moretti M, Hountondji M, Ge R, et al. Selectively positioned
                                                                  catechol moiety supports ultrashort self-assembling
            20.  Lotz O, McKenzie DR, Bilek MM, Akhavan B.        peptide hydrogel adhesion for coral restoration. Langmuir.
               Biofunctionalized 3D printed structures for biomedical   2023;39(49):17903-17920.
               applications: a critical review of recent advances and future      doi: 10.1021/acs.langmuir.3c02553
               prospects. Prog Mater Sci. 2023;137:101124.
               doi: 10.1016/j.pmatsci.2023.101124              32.  Alhattab DM, Isaioglou I, Alshehri S, Khan ZN. Fabrication
                                                                  of a three-dimensional bone marrow niche-like acute
            21.  GhavamiNejad A, Ashammakhi N, Wu XY, Khademhosseini   myeloid Leukemia  disease model  by an automated and
               A. Crosslinking strategies for 3D bioprinting of polymeric   controlled process using a robotic multicellular bioprinting
               hydrogels. Small. 2020;16(35):2002931.             system. Biomater Res. 2023;27(1):111.
               doi: 10.1002/smll.202002931                        doi: 10.1186/s40824-023-00457-9
            22.  Hauser CA, Deng R, Mishra A, et al. Natural tri- to   33.  Loo Y, Chan YS, Szczerbinska I, et al. A chemically well-
               hexapeptides self-assemble in water to amyloid beta-type   defined, self-assembling 3D substrate for long-term culture
               fiber  aggregates  by  unexpected  alpha-helical  intermediate   of human pluripotent stem cells.  ACS Appl Bio Mater.
               structures. Proc Natl Acad Sci U S A. 2011;108(4):1361-1366.  2019;2(4):1406-1412.
               doi: 10.1073/pnas.1014796108                       doi: 10.1021/acsabm.8b00686


            Volume 10 Issue 5 (2024)                       360                                doi: 10.36922/ijb.3033
   363   364   365   366   367   368   369   370   371   372   373