Page 368 - IJB-10-5
P. 368
International Journal of Bioprinting Printing organoids in peptide matrices
11. Linnekamp JF, Hooff SRV, Prasetyanti PR, et al. Consensus 23. Loo Y, Zhang S, Hauser CAE. From short peptides to
molecular subtypes of colorectal cancer are recapitulated in nanofibers to macromolecular assemblies in biomedicine.
in vitro and in vivo models. Cell Death Differ. 2018;25(3): Biotechnol Adv. 2012;30:593-603.
616-633. doi: 10.1016/j.biotechadv.2011.10.004
doi: 10.1038/s41418-017-0011-5 24. Liu Y, Zhang L, Wei W. Effect of noncovalent interaction on
12. Sveen A, Bruun J, Eide PW, et al. Colorectal cancer consensus the self-assembly of a designed peptide and its potential use
molecular subtypes translated to preclinical models uncover as a carrier for controlled bFGF release. Int J Nanomedicine.
potentially targetable cancer cell dependencies. Clin Cancer 2017;12:659-670.
Res. 2018;24(4):794-806. doi: 10.2147/IJN.S124523
doi: 10.1158/1078-0432.CCR-17-1234 25. Abdelrahman S, Alsanie WF, Khan ZN, et al. A Parkinson’s
13. Idris M, Alves MM, Hofstra RMW, Mahe MM, Melotte V. disease model composed of 3D bioprinted dopaminergic
Intestinal multicellular organoids to study colorectal cancer. neurons within a biomimetic peptide scaffold. Biofabrication.
Biochim Biophys Acta Rev Cancer. 2021;1876(2):188586. 2022;14(4):044103.
doi: 10.1016/j.bbcan.2021.188586 doi: 10.1088/1758-5090/ac7eec
14. Varga OE, Hansen AK, Sandøe P, Olsson IA. Validating 26. Abdelrahman S, Ge R, Susapto HH, et al. The impact of
animal models for preclinical research: a scientific and mechanical cues on the metabolomic and transcriptomic
ethical discussion. Altern Lab Anim. 2010;38(3):245-248. profiles of human dermal fibroblasts cultured in ultrashort
doi: 10.1177/026119291003800309 self-assembling peptide 3D scaffolds. ACS Nano.
2023;17(15):14508-14531.
15. Date S, Sato T. Mini-gut organoids: reconstitution of the doi: 10.1021/acsnano.3c01176
stem cell niche. Annu Rev Cell Dev Biol. 2015;31:269-289.
doi: 10.1146/annurev-cellbio-100814-125218 27. Alzanbaki H, Moretti M, Hauser CAE. Engineered
microgels-their manufacturing and biomedical applications.
16. Sato T, Stange DE, Ferrante M, et al. Long-term expansion Micromachines (Basel). 2021;12(1):45.
of epithelial organoids from human colon, adenoma, doi: 10.3390/mi12010045
adenocarcinoma, and Barrett’s epithelium. Gastroenterology.
2011;141(5):1762-1772. 28. Pérez-Pedroza R, Ávila-Ramirez A, Khan Z, Moreti M,
doi: 10.1053/j.gastro.2011.07.050 Hauser CAE. Supramolecular biopolymers for tissue
engineering. Adv Polym Technol. 2021;2021:1-23.
17. Drost J, Clevers H. Organoids in cancer research. Nat Rev doi: 10.1155/2021/8815006
Cancer. 2018;18:407-418.
doi: 10.1038/s41568-018-0007-6 29. Wang Y, Liu X, Ge R, et al. Peptide gel electrolytes for
stabilized zn metal anodes. ACS Nano. 2024;18(1):164-177.
18. Maharjan S, Ma C, Singh B, et al. Advanced 3D imaging and doi: 10.1021/acsnano.3c04414
organoid bioprinting for biomedical research and therapeutic
applications. Adv Drug Deliv Rev. 2024;208:115237. 30. Bilalis P, Alrashoudi AΑ, Susapto HH, et al. Dipeptide-based
doi: 10.1016/j.addr.2024.115237 photoreactive instant glue for environmental and biomedical
applications. ACS Appl Mater Interfaces. 2023;15(40):
19. De Stefano P, Briatico-Vangosa F, Bianchi E, et al. Bioprinting 46710-46720.
of matrigel scaffolds for cancer research. Polymers (Basel). doi: 10.1021/acsami.3c10726
2021;13(12):2026.
doi: 10.3390/polym13122026 31. Moretti M, Hountondji M, Ge R, et al. Selectively positioned
catechol moiety supports ultrashort self-assembling
20. Lotz O, McKenzie DR, Bilek MM, Akhavan B. peptide hydrogel adhesion for coral restoration. Langmuir.
Biofunctionalized 3D printed structures for biomedical 2023;39(49):17903-17920.
applications: a critical review of recent advances and future doi: 10.1021/acs.langmuir.3c02553
prospects. Prog Mater Sci. 2023;137:101124.
doi: 10.1016/j.pmatsci.2023.101124 32. Alhattab DM, Isaioglou I, Alshehri S, Khan ZN. Fabrication
of a three-dimensional bone marrow niche-like acute
21. GhavamiNejad A, Ashammakhi N, Wu XY, Khademhosseini myeloid Leukemia disease model by an automated and
A. Crosslinking strategies for 3D bioprinting of polymeric controlled process using a robotic multicellular bioprinting
hydrogels. Small. 2020;16(35):2002931. system. Biomater Res. 2023;27(1):111.
doi: 10.1002/smll.202002931 doi: 10.1186/s40824-023-00457-9
22. Hauser CA, Deng R, Mishra A, et al. Natural tri- to 33. Loo Y, Chan YS, Szczerbinska I, et al. A chemically well-
hexapeptides self-assemble in water to amyloid beta-type defined, self-assembling 3D substrate for long-term culture
fiber aggregates by unexpected alpha-helical intermediate of human pluripotent stem cells. ACS Appl Bio Mater.
structures. Proc Natl Acad Sci U S A. 2011;108(4):1361-1366. 2019;2(4):1406-1412.
doi: 10.1073/pnas.1014796108 doi: 10.1021/acsabm.8b00686
Volume 10 Issue 5 (2024) 360 doi: 10.36922/ijb.3033

