Page 369 - IJB-10-5
P. 369

International Journal of Bioprinting                                  Printing organoids in peptide matrices




            34.  Loo Y, Lakshmanan A, Ni M, Toh LL, Wang S, Hauser      doi: 10.1038/s41592-020-01018-x.
               CA. Peptide bioink: self-assembling nanofibrous scaffolds   46.  Pachitariu M, Stringer C. Cellpose 2.0: how to train your
               for  three-dimensional  organotypic  cultures.  Nano Lett.   own model. Nat Methods. 2022;19(12):1634-1641.
               2015;15(10):6919-6925.                             doi: 10.1038/s41592-022-01663-4
               doi: 10.1021/acs.nanolett.5b02859
                                                               47.  Shoulders MD, Raines RT. Collagen structure and stability.
            35.  Alshehri S, Susapto HH, Hauser CAE. Scaffolds from self-
               assembling tetrapeptides support 3D spreading, osteogenic   Annu Rev Biochem. 2009;78:929-958.
               differentiation, and angiogenesis of mesenchymal stem cells.      doi: 10.1146/annurev.biochem.77.032207.120833
               Biomacromolecules. 2021;22(5):2094-2106.        48.  Zhang P, Moretti M, Allione M,  et al.  A droplet reactor
               doi: 10.1021/acs.biomac.1c00205                    on a super-hydrophobic surface allows control and
                                                                  characterization of amyloid fibril growth.  Commun Biol.
            36.  Susapto HH, Alhattab D, Abdelrahman S, et al. Ultrashort
               peptide bioinks support automated printing of large-scale   2020;3:457.
               constructs assuring long-term survival of printed tissue      doi: 10.1038/s42003-020-01187-7
               constructs. Nano Lett. 2021;21(7):2719-2729.    49.  Moretti M, Allione M, Marini M, et al. Confined laminar
               doi: 10.1021/acs.nanolett.0c04426                  flow on a super-hydrophobic surface drives the initial stages
            37.  Pérez-Pedroza  R,  Al-Jalih  F,  Xu  J,  Moretti  M,  Briola  GR,   of tau protein aggregation.  Microelectron Eng. 2018;191:
               Hauser CAE. Fabrication of lumen-forming colorectal   54-59.
               cancer organoids using a newly designed laminin-derived      doi: 10.1016/j.mee.2018.01.025
               bioink. Int J Bioprint. 2022;9(1):633.          50.  Moretti M, Allione M, Marini M, et al. Raman study of
               doi: 10.18063/ijb.v9i1.633                         lysozyme amyloid fibrils suspended on super-hydrophobic
            38.  Peng G, Yao D, Niu Y, Liu H, Fan Y. Surface modification of   surfaces by shear flow. Microelectron Eng. 2017;178:194-198.
               multiple bioactive peptides to improve endothelialization of      doi: 10.1016/ j.mee.2017.05.045
               vascular grafts. Macromol Biosci. 2019;19(5):e1800368.  51.  Xu ZY, Huang JJ, Liu Y, et al. Extracellular matrix bioink
               doi: 10.1002/mabi.201800368                        boosts stemness and facilitates transplantation of intestinal
            39.  Ali S, Saik JE, Gould DJ, Dickinson ME, West JL.   organoids as a biosafe Matrigel alternative.  Bioeng Transl
               Immobilization of cell-adhesive laminin peptides in   Med. 2022;8(1):e10327.
               degradable PEGDA hydrogels influences endothelial cell      doi: 10.1002/btm2.10327
               tubulogenesis. Biores Open Access. 2013;2(4):241-249.  52.  DiMarco RL, Dewi RE, Bernal G, Kuo C, Heilshorn
               doi: 10.1089/biores.2013.0021                      SC.  Protein-engineered  scaffolds  for  in  vitro  3D  culture
            40.  Bellis SL. Advantages of RGD peptides for directing   of primary adult intestinal organoids.  Biomater Sci.
               cell  association  with  biomaterials.  Biomaterials.   2015;3(10):1376-1385.
               2011;32(18):4205-4210.                             doi: 10.1039/c5bm00108k
               doi: 10.1016/j.biomaterials.2011.02.029         53.  Almdal K, Hvidt DS, Kramer O. Towards a phenomenological
            41.  Yamada Y, Onda T, Hagiuda A, et al. RGDX  X   motif   definition of the term ‘gel’.  Polymer Gels Netw. 1993;
                                                     2
                                                  1
               regulates integrin αvβ5 binding for pluripotent stem cell   1(1):5-17.
               adhesion. FASEB J. 2022;36(7):e22389.              doi: 10.1016/0966-7822(93)90020-I
               doi: 10.1096/fj.202200317R                      54.  Yeung T, Georges PC, Flanagan LA, et al. Effects of substrate
            42.  Gjorevski N, Sachs N, Manfrin A, et al. Designer matrices   stiffness on cell morphology, cytoskeletal structure, and
               for intestinal stem cell and organoid culture.  Nature.   adhesion. Cell Motil Cytoskeleton. 2005;60(1):24-34.
               2016;539(7630):560-564.                            doi: 10.1002/cm.20041
               doi: 10.1038/nature20168                        55.  Maldonado M, Wong LY, Echeverria C, et al. The effects of
            43.  Rezakhani S, Gjorevski N, Lutolf MP. Extracellular matrix   electrospun substrate-mediated cell colony morphology on
               requirements  for  gastrointestinal  organoid  cultures.   the self-renewal of human induced pluripotent stem cells.
               Biomaterials. 2021;276:121020.                     Biomaterials. 2015;50:10-19.
               doi: 10.1016/j.biomaterials.2021.121020            doi: 10.1016/j.biomaterials.2015.01.037
            44.  Kim S, Min S, Choi YS, et al. Tissue extracellular matrix   56.  Hushka EA, Yavitt FM, Brown TE, Dempsey PJ, Anseth
               hydrogels  as  alternatives  to  matrigel for  culturing   KS. Relaxation of extracellular matrix forces directs crypt
               gastrointestinal organoids. Nat Commun. 2022;13(1):1692.  formation and architecture in intestinal organoids.  Adv
               doi: 10.1038/s41467-022-29279-4                    Healthc Mater. 2020;9(8):e1901214.
                                                                  doi: 10.1002/adhm.201901214
            45.  Stringer C, Wang T, Michaelos M, Pachitariu M. Cellpose: a
               generalist algorithm for cellular segmentation. Nat Methods.   57.  Ruiter FAA, Morgan FLC, Roumans N, et al. Soft,
               2021;18(1):100-106.                                dynamic hydrogel confinement improves kidney organoid


            Volume 10 Issue 5 (2024)                       361                                doi: 10.36922/ijb.3033
   364   365   366   367   368   369   370   371   372   373   374