Page 369 - IJB-10-5
P. 369
International Journal of Bioprinting Printing organoids in peptide matrices
34. Loo Y, Lakshmanan A, Ni M, Toh LL, Wang S, Hauser doi: 10.1038/s41592-020-01018-x.
CA. Peptide bioink: self-assembling nanofibrous scaffolds 46. Pachitariu M, Stringer C. Cellpose 2.0: how to train your
for three-dimensional organotypic cultures. Nano Lett. own model. Nat Methods. 2022;19(12):1634-1641.
2015;15(10):6919-6925. doi: 10.1038/s41592-022-01663-4
doi: 10.1021/acs.nanolett.5b02859
47. Shoulders MD, Raines RT. Collagen structure and stability.
35. Alshehri S, Susapto HH, Hauser CAE. Scaffolds from self-
assembling tetrapeptides support 3D spreading, osteogenic Annu Rev Biochem. 2009;78:929-958.
differentiation, and angiogenesis of mesenchymal stem cells. doi: 10.1146/annurev.biochem.77.032207.120833
Biomacromolecules. 2021;22(5):2094-2106. 48. Zhang P, Moretti M, Allione M, et al. A droplet reactor
doi: 10.1021/acs.biomac.1c00205 on a super-hydrophobic surface allows control and
characterization of amyloid fibril growth. Commun Biol.
36. Susapto HH, Alhattab D, Abdelrahman S, et al. Ultrashort
peptide bioinks support automated printing of large-scale 2020;3:457.
constructs assuring long-term survival of printed tissue doi: 10.1038/s42003-020-01187-7
constructs. Nano Lett. 2021;21(7):2719-2729. 49. Moretti M, Allione M, Marini M, et al. Confined laminar
doi: 10.1021/acs.nanolett.0c04426 flow on a super-hydrophobic surface drives the initial stages
37. Pérez-Pedroza R, Al-Jalih F, Xu J, Moretti M, Briola GR, of tau protein aggregation. Microelectron Eng. 2018;191:
Hauser CAE. Fabrication of lumen-forming colorectal 54-59.
cancer organoids using a newly designed laminin-derived doi: 10.1016/j.mee.2018.01.025
bioink. Int J Bioprint. 2022;9(1):633. 50. Moretti M, Allione M, Marini M, et al. Raman study of
doi: 10.18063/ijb.v9i1.633 lysozyme amyloid fibrils suspended on super-hydrophobic
38. Peng G, Yao D, Niu Y, Liu H, Fan Y. Surface modification of surfaces by shear flow. Microelectron Eng. 2017;178:194-198.
multiple bioactive peptides to improve endothelialization of doi: 10.1016/ j.mee.2017.05.045
vascular grafts. Macromol Biosci. 2019;19(5):e1800368. 51. Xu ZY, Huang JJ, Liu Y, et al. Extracellular matrix bioink
doi: 10.1002/mabi.201800368 boosts stemness and facilitates transplantation of intestinal
39. Ali S, Saik JE, Gould DJ, Dickinson ME, West JL. organoids as a biosafe Matrigel alternative. Bioeng Transl
Immobilization of cell-adhesive laminin peptides in Med. 2022;8(1):e10327.
degradable PEGDA hydrogels influences endothelial cell doi: 10.1002/btm2.10327
tubulogenesis. Biores Open Access. 2013;2(4):241-249. 52. DiMarco RL, Dewi RE, Bernal G, Kuo C, Heilshorn
doi: 10.1089/biores.2013.0021 SC. Protein-engineered scaffolds for in vitro 3D culture
40. Bellis SL. Advantages of RGD peptides for directing of primary adult intestinal organoids. Biomater Sci.
cell association with biomaterials. Biomaterials. 2015;3(10):1376-1385.
2011;32(18):4205-4210. doi: 10.1039/c5bm00108k
doi: 10.1016/j.biomaterials.2011.02.029 53. Almdal K, Hvidt DS, Kramer O. Towards a phenomenological
41. Yamada Y, Onda T, Hagiuda A, et al. RGDX X motif definition of the term ‘gel’. Polymer Gels Netw. 1993;
2
1
regulates integrin αvβ5 binding for pluripotent stem cell 1(1):5-17.
adhesion. FASEB J. 2022;36(7):e22389. doi: 10.1016/0966-7822(93)90020-I
doi: 10.1096/fj.202200317R 54. Yeung T, Georges PC, Flanagan LA, et al. Effects of substrate
42. Gjorevski N, Sachs N, Manfrin A, et al. Designer matrices stiffness on cell morphology, cytoskeletal structure, and
for intestinal stem cell and organoid culture. Nature. adhesion. Cell Motil Cytoskeleton. 2005;60(1):24-34.
2016;539(7630):560-564. doi: 10.1002/cm.20041
doi: 10.1038/nature20168 55. Maldonado M, Wong LY, Echeverria C, et al. The effects of
43. Rezakhani S, Gjorevski N, Lutolf MP. Extracellular matrix electrospun substrate-mediated cell colony morphology on
requirements for gastrointestinal organoid cultures. the self-renewal of human induced pluripotent stem cells.
Biomaterials. 2021;276:121020. Biomaterials. 2015;50:10-19.
doi: 10.1016/j.biomaterials.2021.121020 doi: 10.1016/j.biomaterials.2015.01.037
44. Kim S, Min S, Choi YS, et al. Tissue extracellular matrix 56. Hushka EA, Yavitt FM, Brown TE, Dempsey PJ, Anseth
hydrogels as alternatives to matrigel for culturing KS. Relaxation of extracellular matrix forces directs crypt
gastrointestinal organoids. Nat Commun. 2022;13(1):1692. formation and architecture in intestinal organoids. Adv
doi: 10.1038/s41467-022-29279-4 Healthc Mater. 2020;9(8):e1901214.
doi: 10.1002/adhm.201901214
45. Stringer C, Wang T, Michaelos M, Pachitariu M. Cellpose: a
generalist algorithm for cellular segmentation. Nat Methods. 57. Ruiter FAA, Morgan FLC, Roumans N, et al. Soft,
2021;18(1):100-106. dynamic hydrogel confinement improves kidney organoid
Volume 10 Issue 5 (2024) 361 doi: 10.36922/ijb.3033

