Page 37 - IJB-10-5
P. 37

International Journal of Bioprinting                                3D bioprinting for nanoparticle evaluation




            106. Ajdary M, Moosavi MA, Rahmati M, et al. Health concerns   117. Kashkooli FM, Soltani M, Souri M. Controlled anti-cancer
               of various nanoparticles: a review of their in vitro and in vivo   drug release through advanced nano-drug delivery systems:
               toxicity. Nanomaterials. 2018;8(9):634.            static and dynamic targeting strategies.  J Control Release.
               doi: 10.3390/nano8090634                           2020;327:316-349.
                                                                  doi: 10.1016/j.jconrel.2020.08.012
            107. Wang M, Yang Q, Long J, et al. A comparative study of
               toxicity of TiO2, ZnO, and Ag nanoparticles to human   118. Hussain Z, Arooj M, Malik A, et al. Nanomedicines as
               aortic smooth-muscle cells.  Int J Nanomedicine. 2018:   emerging  platform  for  simultaneous delivery  of  cancer
               8037-8049.                                         therapeutics:  new  developments  in  overcoming  drug
               doi: 10.2147/IJN.S188175                           resistance and optimizing anticancer efficacy.  Artif Cells
                                                                  Nanomed Biotechnol. 2018;46(sup2):1015-1024.
            108. Sanches PL, Geaquinto LRdO, Cruz R, et al. Toxicity
               evaluation of TiO2 nanoparticles on the 3D skin model:   doi: 10.1080/21691401.2018.1478420
               a  systematic  review.  Frontiers  in Bioengineering  and   119. Ahmad J, Garg A, Mustafa G, Mohammed AA, Ahmad
               Biotechnology. 2020;8:575.                         MZ. 3D printing technology as a promising tool to design
               doi: 10.3389/fbioe.2020.00575                      nanomedicine-based solid dosage forms: contemporary
                                                                  research and future scope. Pharmaceutics. 2023;15(5):1448.
            109. Dubiak-Szepietowska M, Karczmarczyk A, Jönsson-
               Niedziółka M, Winckler T, Feller KH. Development of   doi: 10.3390/pharmaceutics15051448
               complex-shaped liver multicellular spheroids as a human-  120. Chakka JL, Salem AK. 3D Printing in Drug Delivery Systems.
               based model for nanoparticle toxicity assessment in vitro.   Taylor & Francis; 2019:59-62.
               Toxicol Appl Pharmacol. 2016;294:78-85.            doi: 10.2217/3dp-2019-0005
               doi: 10.1016/j.taap.2016.01.016
                                                               121. Staros R, Michalak A, Rusinek K, Mucha K, Pojda Z,
            110. Chen L, Wu M, Jiang S, et al. Skin toxicity assessment of   Zagożdżon R. Perspectives for 3D-bioprinting in modeling
               silver nanoparticles in a 3D epidermal model compared to   of tumor immune evasion. Cancers. 2022;14(13):3126.
               2D keratinocytes. Int J Nanomedicine. 2019:9707-9719.  doi: 10.3390/cancers14133126
               doi: 10.2147/IJN.S225451
                                                               122. Garrido-Mesa N, Zarzuelo A, Gálvez J. Minocycline: far
            111. Gelamo EL, Tabak M. Spectroscopic studies on the   beyond an antibiotic. Br J Pharmacol. 2013;169(2):337-352.
               interaction of bovine  (BSA) and human (HSA)  serum      doi: 10.1111/bph.12139
               albumins with ionic surfactants.  Spectrochim Acta Part A   123. Fu Z, Hai N, Zhong Y, Sun W. Printing GelMA bioinks: a
               Mol Biomol Spectrosc. 2000;56(11):2255-2271.       strategy for buildingin vitromodel to study nanoparticle-
               doi: 10.1016/S1386-1425(00)00313-9
                                                                  based minocycline release and cellular protection under
            112. Miller  KL, Sit I, Xiang Y, et al. Evaluation of CuO   oxidative stress. Biofabrication. 2024;16(2):025040.
               nanoparticle toxicity on 3D bioprinted human iPSC-derived      doi: 10.1088/1758-5090/ad30c3
               cardiac tissues. Bioprinting. 2023;32:e00284.   124.  Zhu H, Monavari M, Zheng K, et al. 3D bioprinting of
               doi: 10.1016/j.bprint.2023.e00284
                                                                  multifunctional dynamic nanocomposite bioinks incorporating
            113. Saufi SASA, Zuhri MYM, Dezaki ML, et al. Compression   Cu‐doped mesoporous bioactive glass nanoparticles for bone
               behaviour of bio-inspired honeycomb reinforced starfish   tissue engineering. Small. 2022;18(12):2104996.
               shape structures using 3D printing technology.  Polymers.   doi: 10.1002/smll.202104996
               2021;13(24):4388.                               125. Zhu W, Cui H, Boualam B, et al. 3D bioprinting mesenchymal
               doi: 10.3390/polym13244388
                                                                  stem cell-laden construct with core–shell nanospheres
            114. Bilberg K, Hovgaard MB, Besenbacher F, Baatrup E. In vivo   for  cartilage  tissue  engineering.  Nanotechnology.
               toxicity of silver nanoparticles and silver ions in zebrafish   2018;29(18):185101.
               (danio rerio). J Toxicol. 2012;2012:293784.        doi: 10.1088/1361-6528/aaafa1
               doi: 10.1155/2012/293784
                                                               126. Rizzi F, Castaldo R, Latronico T, et al. High surface area
            115. Gerbolés AG, Galetti M, Rossi S, et al. Three-dimensional   mesoporous  silica  nanoparticles  with  tunable  size  in  the
               bioprinting of organoid-based scaffolds (OBST) for long-  sub-micrometer regime: insights on the size  and porosity
               term  nanoparticle toxicology investigation.  Int J Mol Sci.   control mechanisms.  Molecules (Basel, Switzerland).
               2023;24(7):6595.                                   2021;26(14):4247.
               doi: 10.3390/ijms24076595                          doi: 10.3390/molecules26144247
            116. Hossen S, Hossain MK, Basher M, Mia M, Rahman M,   127. Theus  AS,  Ning  L,  Kabboul  G,  et  al.  3D  bioprinting  of
               Uddin MJ. Smart nanocarrier-based drug delivery systems   nanoparticle-laden hydrogel scaffolds with enhanced
               for cancer therapy and toxicity studies: a review. J Adv Res.   antibacterial  and  imaging  properties.  Iscience.
               2019;15:1-18.                                      2022;25(9):104947.
               doi: 10.1016/j.jare.2018.06.005                    doi: 10.1016/j.isci.2022.104947



            Volume 10 Issue 5 (2024)                        29                                doi: 10.36922/ijb.4273
   32   33   34   35   36   37   38   39   40   41   42