Page 37 - IJB-10-5
P. 37
International Journal of Bioprinting 3D bioprinting for nanoparticle evaluation
106. Ajdary M, Moosavi MA, Rahmati M, et al. Health concerns 117. Kashkooli FM, Soltani M, Souri M. Controlled anti-cancer
of various nanoparticles: a review of their in vitro and in vivo drug release through advanced nano-drug delivery systems:
toxicity. Nanomaterials. 2018;8(9):634. static and dynamic targeting strategies. J Control Release.
doi: 10.3390/nano8090634 2020;327:316-349.
doi: 10.1016/j.jconrel.2020.08.012
107. Wang M, Yang Q, Long J, et al. A comparative study of
toxicity of TiO2, ZnO, and Ag nanoparticles to human 118. Hussain Z, Arooj M, Malik A, et al. Nanomedicines as
aortic smooth-muscle cells. Int J Nanomedicine. 2018: emerging platform for simultaneous delivery of cancer
8037-8049. therapeutics: new developments in overcoming drug
doi: 10.2147/IJN.S188175 resistance and optimizing anticancer efficacy. Artif Cells
Nanomed Biotechnol. 2018;46(sup2):1015-1024.
108. Sanches PL, Geaquinto LRdO, Cruz R, et al. Toxicity
evaluation of TiO2 nanoparticles on the 3D skin model: doi: 10.1080/21691401.2018.1478420
a systematic review. Frontiers in Bioengineering and 119. Ahmad J, Garg A, Mustafa G, Mohammed AA, Ahmad
Biotechnology. 2020;8:575. MZ. 3D printing technology as a promising tool to design
doi: 10.3389/fbioe.2020.00575 nanomedicine-based solid dosage forms: contemporary
research and future scope. Pharmaceutics. 2023;15(5):1448.
109. Dubiak-Szepietowska M, Karczmarczyk A, Jönsson-
Niedziółka M, Winckler T, Feller KH. Development of doi: 10.3390/pharmaceutics15051448
complex-shaped liver multicellular spheroids as a human- 120. Chakka JL, Salem AK. 3D Printing in Drug Delivery Systems.
based model for nanoparticle toxicity assessment in vitro. Taylor & Francis; 2019:59-62.
Toxicol Appl Pharmacol. 2016;294:78-85. doi: 10.2217/3dp-2019-0005
doi: 10.1016/j.taap.2016.01.016
121. Staros R, Michalak A, Rusinek K, Mucha K, Pojda Z,
110. Chen L, Wu M, Jiang S, et al. Skin toxicity assessment of Zagożdżon R. Perspectives for 3D-bioprinting in modeling
silver nanoparticles in a 3D epidermal model compared to of tumor immune evasion. Cancers. 2022;14(13):3126.
2D keratinocytes. Int J Nanomedicine. 2019:9707-9719. doi: 10.3390/cancers14133126
doi: 10.2147/IJN.S225451
122. Garrido-Mesa N, Zarzuelo A, Gálvez J. Minocycline: far
111. Gelamo EL, Tabak M. Spectroscopic studies on the beyond an antibiotic. Br J Pharmacol. 2013;169(2):337-352.
interaction of bovine (BSA) and human (HSA) serum doi: 10.1111/bph.12139
albumins with ionic surfactants. Spectrochim Acta Part A 123. Fu Z, Hai N, Zhong Y, Sun W. Printing GelMA bioinks: a
Mol Biomol Spectrosc. 2000;56(11):2255-2271. strategy for buildingin vitromodel to study nanoparticle-
doi: 10.1016/S1386-1425(00)00313-9
based minocycline release and cellular protection under
112. Miller KL, Sit I, Xiang Y, et al. Evaluation of CuO oxidative stress. Biofabrication. 2024;16(2):025040.
nanoparticle toxicity on 3D bioprinted human iPSC-derived doi: 10.1088/1758-5090/ad30c3
cardiac tissues. Bioprinting. 2023;32:e00284. 124. Zhu H, Monavari M, Zheng K, et al. 3D bioprinting of
doi: 10.1016/j.bprint.2023.e00284
multifunctional dynamic nanocomposite bioinks incorporating
113. Saufi SASA, Zuhri MYM, Dezaki ML, et al. Compression Cu‐doped mesoporous bioactive glass nanoparticles for bone
behaviour of bio-inspired honeycomb reinforced starfish tissue engineering. Small. 2022;18(12):2104996.
shape structures using 3D printing technology. Polymers. doi: 10.1002/smll.202104996
2021;13(24):4388. 125. Zhu W, Cui H, Boualam B, et al. 3D bioprinting mesenchymal
doi: 10.3390/polym13244388
stem cell-laden construct with core–shell nanospheres
114. Bilberg K, Hovgaard MB, Besenbacher F, Baatrup E. In vivo for cartilage tissue engineering. Nanotechnology.
toxicity of silver nanoparticles and silver ions in zebrafish 2018;29(18):185101.
(danio rerio). J Toxicol. 2012;2012:293784. doi: 10.1088/1361-6528/aaafa1
doi: 10.1155/2012/293784
126. Rizzi F, Castaldo R, Latronico T, et al. High surface area
115. Gerbolés AG, Galetti M, Rossi S, et al. Three-dimensional mesoporous silica nanoparticles with tunable size in the
bioprinting of organoid-based scaffolds (OBST) for long- sub-micrometer regime: insights on the size and porosity
term nanoparticle toxicology investigation. Int J Mol Sci. control mechanisms. Molecules (Basel, Switzerland).
2023;24(7):6595. 2021;26(14):4247.
doi: 10.3390/ijms24076595 doi: 10.3390/molecules26144247
116. Hossen S, Hossain MK, Basher M, Mia M, Rahman M, 127. Theus AS, Ning L, Kabboul G, et al. 3D bioprinting of
Uddin MJ. Smart nanocarrier-based drug delivery systems nanoparticle-laden hydrogel scaffolds with enhanced
for cancer therapy and toxicity studies: a review. J Adv Res. antibacterial and imaging properties. Iscience.
2019;15:1-18. 2022;25(9):104947.
doi: 10.1016/j.jare.2018.06.005 doi: 10.1016/j.isci.2022.104947
Volume 10 Issue 5 (2024) 29 doi: 10.36922/ijb.4273

