Page 35 - IJB-10-5
P. 35

International Journal of Bioprinting                                3D bioprinting for nanoparticle evaluation




            62.  Yalgın A, Köse FA, Gökçe EH. The effect of cyclosporine A   74.  Nemmar A, Beegam S, Yuvaraju P, et al. Ultrasmall
               and co-enzyme Q10 loaded solid lipid nanoparticles on 3D   superparamagnetic  iron  oxide  nanoparticles  acutely
               printed human auricular model: evaluation of cell growth. J   promote thrombosis and cardiac oxidative stress and DNA
               Drug Deliv Sci Technol. 2023;79:104087.            damage in mice. Part Fibre Toxicol. 2015;13:1-11.
               doi: 10.1016/j.jddst.2022.104087                   doi: 10.1186/s12989-016-0132-x
            63.  Fang  Y,  Ouyang  L,  Zhang  T,  Wang  C,  Lu  B,  Sun  W.   75.  Ning L, Zanella S, Tomov ML, et al. Targeted rapamycin
               Optimizing bifurcated channels within an anisotropic   delivery via magnetic nanoparticles to address stenosis in a
               scaffold for engineering vascularized oriented tissues. Adv   3D bioprinted in vitro model of pulmonary veins. Adv Sci
               Healthc Mater. 2020;9(24):e2000782.                (Weinh). 2024;11(26):e2400476.
               doi: 10.1002/adhm.202000782                        doi: 10.1002/advs.202400476
            64.  Gao Q, Liu Z, Lin Z, et al. 3D bioprinting of vessel-like   76.  Lee EJ, Choi J, Lim HJ, et al. 3D-bioprinted cell-laden blood
               structures with multilevel fluidic channels.  ACS Biomater   vessel with dual drug delivery nanoparticles for advancing
               Sci Eng. 2017;3(3):399-408.                        vascular regeneration. Int J Bioprint. 2024;10(2):1857.
               doi: 10.1021/acsbiomaterials.6b00643               doi: 10.36922/ijb.1857
            65.  Zhou X, Gao Q, Yu D, et al. 3D-bioprinted vascular   77.  Song R, Fullerton DA, Ao L, et al. Altered micro RNA
               scaffold with tunable mechanical properties for simulating   expression is responsible for the pro‐osteogenic phenotype
               and promoting neo-vascularization.  Smart Mater Med.   of interstitial cells in calcified human aortic valves.  J Am
               2022;3:199-208.                                    Heart Assoc. 2017;6(4):e005364.
               doi: 10.1016/j.smaim.2022.01.003                   doi: 10.1161/JAHA.116.005364
            66.  Gold KA, Saha B, Rajeeva Pandian NK, et al. 3D bioprinted   78.  Voicu G, Mocanu CA, Safciuc F, et al. Nanocarriers of
               multicellular vascular models.  Adv Healthc Mater.   shRNA-Runx2 directed to collagen IV as a nanotherapeutic
               2021;10(21):2101141.                               system to target calcific aortic valve disease. Mater Today
               doi: 10.1002/adhm.202101141                        Bio. 2023;20:100620.
            67.  Boada C, Zinger A, Tsao C, et al. Rapamycin-loaded      doi: 10.1016/j.mtbio.2023.100620
               biomimetic nanoparticles reverse vascular inflammation.   79.  van der Ven CFT, Tibbitt MW, Conde J, et al. Controlled
               Circ Res. 2020;126(1):25-37.                       delivery of gold nanoparticle-coupled miRNA therapeutics
               doi: 10.1161/CIRCRESAHA.119.315185                 via an injectable self-healing hydrogel.  Nanoscale.
            68.  Betala J, Bae S, Langan III EM, LaBerge M, Lee  JS.   2021;13(48):20451-20461.
               Combinatorial therapy of sirolimus and heparin by      doi: 10.1039/d1nr04973a
               nanocarrier inhibits restenosis after balloon angioplasty ex   80.  Ning  L,  Gil  CJ,  Hwang  B,  et  al.  Biomechanical  factors
               vivo. Nanomedicine. 2020;15(12):1205-1220.         in three-dimensional tissue bioprinting.  Appl Phys Rev.
               doi: 10.2217/nnm-2020-0028                         2020;7(4):041319.
            69.  Rosner  D,  McCarthy  N,  Bennett  M.  Rapamycin  inhibits      doi: 10.1063/5.0023206
               human in stent restenosis vascular smooth muscle cells   81.  Byambaa B, Annabi N, Yue K, et al. Bioprinted osteogenic
               independently of pRB phosphorylation and p53. Cardiovasc   and vasculogenic patterns for engineering 3D bone tissue.
               Res. 2005;66(3):601-610.                           Adv Healthc Mater. 2017;6(16):1700015.
               doi: 10.1016/j.cardiores.2005.01.006               doi: 10.1002/adhm.201700015
            70.  Hauser PV, Chang H-M, Nishikawa M, Kimura H, Yanagawa   82.  Gonzalez-Fernandez T, Tenorio AJ, Campbell KT, Silva EA,
               N, Hamon M. Bioprinting scaffolds for vascular tissues and   Leach JK. Alginate-based bioinks for 3D bioprinting and
               tissue vascularization. Bioengineering. 2021;8(11):178.  fabrication of anatomically accurate bone grafts. Tissue Eng
               doi: 10.3390/bioengineering8110178                 Part A. 2021;27(17–18):1168-1181.
            71.  Choi J, Lee EJ, Lim HJ, et al. Development of 3D-bioprinted      doi: 10.1089/ten.TEA.2020.0305
               artificial blood vessels loaded with rapamycin-nanoparticles   83.  Fischetti T, Di Pompo G, Baldini N, Avnet S, Graziani G.
               for ischemic repair. Int J Bioprin. 2024;10(2):1465.  3D printing and bioprinting to model bone cancer: the role
               doi: 10.36922/ijb.1465
                                                                  of materials and nanoscale cues in directing cell behavior.
            72.  Ge G, Wu H, Xiong F, et al. The cytotoxicity evaluation   Cancers. 2021;13(16):4065.
               of magnetic iron oxide nanoparticles on human aortic      doi: 10.3390/cancers13164065
               endothelial cells. Nanoscale Res Lett. 2013;8:1-10.  84.  Holmes B, Bulusu K, Plesniak M, Zhang LG. A synergistic
               doi: 10.1186/1556-276X-8-215                       approach to the design, fabrication and evaluation
            73.  Wu X, Tan Y, Mao H, Zhang M. Toxic effects of iron oxide   of 3D printed micro and nano featured scaffolds for
               nanoparticles on human umbilical vein endothelial cells. Int   vascularized bone tissue repair. Nanotechnology. 2016;27(6):
               J Nanomedicine. 2010;5:385-399.                    064001.
               doi: 10.2147/ijn.s10458                            doi: 10.1088/0957-4484/27/6/064001

            Volume 10 Issue 5 (2024)                        27                                doi: 10.36922/ijb.4273
   30   31   32   33   34   35   36   37   38   39   40