Page 35 - IJB-10-5
P. 35
International Journal of Bioprinting 3D bioprinting for nanoparticle evaluation
62. Yalgın A, Köse FA, Gökçe EH. The effect of cyclosporine A 74. Nemmar A, Beegam S, Yuvaraju P, et al. Ultrasmall
and co-enzyme Q10 loaded solid lipid nanoparticles on 3D superparamagnetic iron oxide nanoparticles acutely
printed human auricular model: evaluation of cell growth. J promote thrombosis and cardiac oxidative stress and DNA
Drug Deliv Sci Technol. 2023;79:104087. damage in mice. Part Fibre Toxicol. 2015;13:1-11.
doi: 10.1016/j.jddst.2022.104087 doi: 10.1186/s12989-016-0132-x
63. Fang Y, Ouyang L, Zhang T, Wang C, Lu B, Sun W. 75. Ning L, Zanella S, Tomov ML, et al. Targeted rapamycin
Optimizing bifurcated channels within an anisotropic delivery via magnetic nanoparticles to address stenosis in a
scaffold for engineering vascularized oriented tissues. Adv 3D bioprinted in vitro model of pulmonary veins. Adv Sci
Healthc Mater. 2020;9(24):e2000782. (Weinh). 2024;11(26):e2400476.
doi: 10.1002/adhm.202000782 doi: 10.1002/advs.202400476
64. Gao Q, Liu Z, Lin Z, et al. 3D bioprinting of vessel-like 76. Lee EJ, Choi J, Lim HJ, et al. 3D-bioprinted cell-laden blood
structures with multilevel fluidic channels. ACS Biomater vessel with dual drug delivery nanoparticles for advancing
Sci Eng. 2017;3(3):399-408. vascular regeneration. Int J Bioprint. 2024;10(2):1857.
doi: 10.1021/acsbiomaterials.6b00643 doi: 10.36922/ijb.1857
65. Zhou X, Gao Q, Yu D, et al. 3D-bioprinted vascular 77. Song R, Fullerton DA, Ao L, et al. Altered micro RNA
scaffold with tunable mechanical properties for simulating expression is responsible for the pro‐osteogenic phenotype
and promoting neo-vascularization. Smart Mater Med. of interstitial cells in calcified human aortic valves. J Am
2022;3:199-208. Heart Assoc. 2017;6(4):e005364.
doi: 10.1016/j.smaim.2022.01.003 doi: 10.1161/JAHA.116.005364
66. Gold KA, Saha B, Rajeeva Pandian NK, et al. 3D bioprinted 78. Voicu G, Mocanu CA, Safciuc F, et al. Nanocarriers of
multicellular vascular models. Adv Healthc Mater. shRNA-Runx2 directed to collagen IV as a nanotherapeutic
2021;10(21):2101141. system to target calcific aortic valve disease. Mater Today
doi: 10.1002/adhm.202101141 Bio. 2023;20:100620.
67. Boada C, Zinger A, Tsao C, et al. Rapamycin-loaded doi: 10.1016/j.mtbio.2023.100620
biomimetic nanoparticles reverse vascular inflammation. 79. van der Ven CFT, Tibbitt MW, Conde J, et al. Controlled
Circ Res. 2020;126(1):25-37. delivery of gold nanoparticle-coupled miRNA therapeutics
doi: 10.1161/CIRCRESAHA.119.315185 via an injectable self-healing hydrogel. Nanoscale.
68. Betala J, Bae S, Langan III EM, LaBerge M, Lee JS. 2021;13(48):20451-20461.
Combinatorial therapy of sirolimus and heparin by doi: 10.1039/d1nr04973a
nanocarrier inhibits restenosis after balloon angioplasty ex 80. Ning L, Gil CJ, Hwang B, et al. Biomechanical factors
vivo. Nanomedicine. 2020;15(12):1205-1220. in three-dimensional tissue bioprinting. Appl Phys Rev.
doi: 10.2217/nnm-2020-0028 2020;7(4):041319.
69. Rosner D, McCarthy N, Bennett M. Rapamycin inhibits doi: 10.1063/5.0023206
human in stent restenosis vascular smooth muscle cells 81. Byambaa B, Annabi N, Yue K, et al. Bioprinted osteogenic
independently of pRB phosphorylation and p53. Cardiovasc and vasculogenic patterns for engineering 3D bone tissue.
Res. 2005;66(3):601-610. Adv Healthc Mater. 2017;6(16):1700015.
doi: 10.1016/j.cardiores.2005.01.006 doi: 10.1002/adhm.201700015
70. Hauser PV, Chang H-M, Nishikawa M, Kimura H, Yanagawa 82. Gonzalez-Fernandez T, Tenorio AJ, Campbell KT, Silva EA,
N, Hamon M. Bioprinting scaffolds for vascular tissues and Leach JK. Alginate-based bioinks for 3D bioprinting and
tissue vascularization. Bioengineering. 2021;8(11):178. fabrication of anatomically accurate bone grafts. Tissue Eng
doi: 10.3390/bioengineering8110178 Part A. 2021;27(17–18):1168-1181.
71. Choi J, Lee EJ, Lim HJ, et al. Development of 3D-bioprinted doi: 10.1089/ten.TEA.2020.0305
artificial blood vessels loaded with rapamycin-nanoparticles 83. Fischetti T, Di Pompo G, Baldini N, Avnet S, Graziani G.
for ischemic repair. Int J Bioprin. 2024;10(2):1465. 3D printing and bioprinting to model bone cancer: the role
doi: 10.36922/ijb.1465
of materials and nanoscale cues in directing cell behavior.
72. Ge G, Wu H, Xiong F, et al. The cytotoxicity evaluation Cancers. 2021;13(16):4065.
of magnetic iron oxide nanoparticles on human aortic doi: 10.3390/cancers13164065
endothelial cells. Nanoscale Res Lett. 2013;8:1-10. 84. Holmes B, Bulusu K, Plesniak M, Zhang LG. A synergistic
doi: 10.1186/1556-276X-8-215 approach to the design, fabrication and evaluation
73. Wu X, Tan Y, Mao H, Zhang M. Toxic effects of iron oxide of 3D printed micro and nano featured scaffolds for
nanoparticles on human umbilical vein endothelial cells. Int vascularized bone tissue repair. Nanotechnology. 2016;27(6):
J Nanomedicine. 2010;5:385-399. 064001.
doi: 10.2147/ijn.s10458 doi: 10.1088/0957-4484/27/6/064001
Volume 10 Issue 5 (2024) 27 doi: 10.36922/ijb.4273

