Page 34 - IJB-10-5
P. 34
International Journal of Bioprinting 3D bioprinting for nanoparticle evaluation
39. Dong X, Li R, Xiu P, et al. Meloxicam executes its a proinflammatory response in a 3D skin equivalent.
antitumor effects against hepatocellular carcinoma in Biomedicines. 2024;12(1):224.
COX-2- dependent and -independent pathways. PloS One. doi: 10.3390/biomedicines12010224
2014;9(3):e92864. 51. Randall MJ, Jüngel A, Rimann M, Wuertz-Kozak K. Advances
doi: 10.1371/journal.pone.0092864
in the biofabrication of 3D skin in vitro: healthy and
40. Rarokar N, Ravikumar C, Gurav S, Khedekar P. Meloxicam pathological models. Front Bioeng Biotechnol. 2018;6:154.
encapsulated nanostructured colloidal self-assembly for doi: 10.3389/fbioe.2018.00154
evaluating antitumor and anti-inflammatory efficacy in 3D 52. Zoio P, Oliva A. Skin-on-a-chip technology:
printed scaffolds. J Biomed Mater Res A. 2021;109(8):1441- microengineering physiologically relevant in vitro skin
1456. models. Pharmaceutics. 2022;14(3):682.
doi: 10.1002/jbm.a.37135
doi: 10.3390/pharmaceutics14030682
41. Kaur IP, Bhandari R, Bhandari S, Kakkar V. Potential of 53. Mukhopadhyay C, Paul MK. Organoid-based 3D in vitro
solid lipid nanoparticles in brain targeting. J Control Release. microphysiological systems as alternatives to animal
2008;127(2):97-109. experimentation for preclinical and clinical research. Arch
doi: 10.1016/j.jconrel.2007.12.018
Toxicol. 2023;97(5):1429-1431.
42. Rohit B, Pal Kaur I. A method to prepare solid lipid doi: 10.1007/s00204-023-03466-8
nanoparticles with improved entrapment efficiency of 54. Marano F. Les méthodes alternatives à l’expérimentation
hydrophilic drugs. Current Nanosci. 2013;9(2):211-220. animale, présent et futur [Alternative methods to animal
doi: 10.2174/1573413711309020008
testing, present and future]. Biol Aujourdhui. 2023;217(3-
43. Liu D, Cito S, Zhang Y, Wang CF, Sikanen TM, Santos HA. 4):199-205.
A versatile and robust microfluidic platform toward high doi: 10.1051/jbio/2023035
throughput synthesis of homogeneous nanoparticles with 55. Gao C, Lu C, Jian Z, et al. 3D bioprinting for fabricating
tunable properties. Adv Mater. 2015;27(14):2298-2304. artificial skin tissue. Colloids Surf B Biointerfaces.
doi: 10.1002/adma.201405408
2021;208:112041.
44. Arduino I, Liu Z, Rahikkala A, et al. Preparation of cetyl doi: 10.1016/j.colsurfb.2021.112041
palmitate-based PEGylated solid lipid nanoparticles by 56. Hou X, Liu S, Wang M, et al. Layer-by-layer 3D constructs
microfluidic technique. Acta Biomater. 2021;121:566-578. of fibroblasts in hydrogel for examining transdermal
doi: 10.1016/j.actbio.2020.12.024
penetration capability of nanoparticles. SLAS Technol.
45. Figueiredo P, Lintinen K, Kiriazis A, et al. In vitro evaluation 2017;22(4):447-453.
of biodegradable lignin-based nanoparticles for drug doi: 10.1177/2211068216655753
delivery and enhanced antiproliferation effect in cancer 57. do Amaral SR, Amantino CF, Atanasov A, et al. Evaluation
cells. Biomaterials. 2017;121:97-108. of photodynamic therapy as a new therapeutic approach
doi: 10.1016/j.biomaterials.2016.12.034
using quinizarin-loaded nanocapsules: in vitro cytotoxicity,
46. Figueiredo P, Sipponen MH, Lintinen K, et al. Preparation permeation in 3D bioprinted skin equivalent and in vitro
and characterization of dentin phosphophoryn-derived cytokines modulation. Preprints; 2024.
peptide-functionalized lignin nanoparticles for enhanced doi: 10.20944/preprints202405.1323.v1
cellular uptake. Small. 2019;15(24):e1901427. 58. Bhamare N, Tardalkar K, Khadilkar A, Parulekar P, Joshi
doi: 10.1002/smll.201901427
MG. Tissue engineering of human ear pinna. Cell Tissue
47. Ahn M, Cho WW, Park W, et al. 3D biofabrication of diseased Bank. 2022;23(3):441-457.
human skin models in vitro. Biomater Res. 2023;27(1):80. doi: 10.1007/s10561-022-09991-7
doi: 10.1186/s40824-023-00415-5
59. Bos EJ, Doerga P, Breugem CC, van Zuijlen PP. The burned
48. Cho SW, Malick H, Kim SJ, Grattoni A. Advances in skin-on- ear; possibilities and challenges in framework reconstruction
a-chip technologies for dermatological disease modeling. J and coverage. Burns. 2016;42(7):1387-1395.
Invest Dermatol. 2024;144(8):1707-1715. doi: 10.1016/j.burns.2016.02.006
doi: 10.1016/j.jid.2024.01.031
60. Abaci A, Camci-Unal G, Guvendiren M, Guest E. Three-
49. Scheurer J, Sauer B, Focken J, et al. Histological and dimensional bioprinting for medical applications. MRS
functional characterization of 3D human skin models Bulletin. 2023;48(6):624-631.
mimicking the inflammatory skin diseases psoriasis and doi: 10.1557/s43577-023-00546-z
atopic dermatitis. Dis Model Mech. 2024;17(1):dmm050541. 61. Bernal PN, Delrot P, Loterie D, et al. Volumetric bioprinting
doi: 10.1242/dmm.050541
of complex living-tissue constructs within seconds. Adv
50. Nuwayhid R, Schulz T, Siemers F, et al. A platform for Mater. 2019;31(42):1904209.
testing the biocompatibility of implants: silicone induces doi: 10.1002/adma.201904209
Volume 10 Issue 5 (2024) 26 doi: 10.36922/ijb.4273

