Page 34 - IJB-10-5
P. 34

International Journal of Bioprinting                                3D bioprinting for nanoparticle evaluation




            39.  Dong X, Li R, Xiu P, et al. Meloxicam executes its   a proinflammatory response in a 3D skin equivalent.
               antitumor effects against hepatocellular carcinoma in   Biomedicines. 2024;12(1):224.
               COX-2- dependent and -independent pathways. PloS One.      doi: 10.3390/biomedicines12010224
               2014;9(3):e92864.                               51.  Randall MJ, Jüngel A, Rimann M, Wuertz-Kozak K. Advances
               doi: 10.1371/journal.pone.0092864
                                                                  in the  biofabrication of 3D skin  in vitro: healthy and
            40.  Rarokar N, Ravikumar C, Gurav S, Khedekar P. Meloxicam   pathological models. Front Bioeng Biotechnol. 2018;6:154.
               encapsulated nanostructured colloidal self-assembly for      doi: 10.3389/fbioe.2018.00154
               evaluating antitumor and anti-inflammatory efficacy in 3D   52.  Zoio  P,  Oliva  A.  Skin-on-a-chip  technology:
               printed scaffolds. J Biomed Mater Res A. 2021;109(8):1441-  microengineering physiologically relevant  in vitro skin
               1456.                                              models. Pharmaceutics. 2022;14(3):682.
               doi: 10.1002/jbm.a.37135
                                                                  doi: 10.3390/pharmaceutics14030682
            41.  Kaur IP, Bhandari R, Bhandari S, Kakkar V. Potential of   53.  Mukhopadhyay C, Paul MK. Organoid-based 3D  in vitro
               solid lipid nanoparticles in brain targeting. J Control Release.   microphysiological systems as alternatives to animal
               2008;127(2):97-109.                                experimentation for preclinical and clinical research. Arch
               doi: 10.1016/j.jconrel.2007.12.018
                                                                  Toxicol. 2023;97(5):1429-1431.
            42.  Rohit B, Pal Kaur I. A method to prepare solid lipid      doi: 10.1007/s00204-023-03466-8
               nanoparticles with improved entrapment efficiency of   54.  Marano F. Les méthodes alternatives à l’expérimentation
               hydrophilic drugs. Current Nanosci. 2013;9(2):211-220.  animale,  présent  et  futur  [Alternative  methods  to  animal
               doi: 10.2174/1573413711309020008
                                                                  testing, present and future].  Biol Aujourdhui. 2023;217(3-
            43.  Liu D, Cito S, Zhang Y, Wang CF, Sikanen TM, Santos HA.   4):199-205.
               A versatile and  robust  microfluidic  platform  toward  high      doi: 10.1051/jbio/2023035
               throughput synthesis of homogeneous nanoparticles with   55.  Gao C, Lu C, Jian Z, et al. 3D bioprinting for fabricating
               tunable properties. Adv Mater. 2015;27(14):2298-2304.  artificial  skin  tissue.  Colloids Surf B Biointerfaces.
               doi: 10.1002/adma.201405408
                                                                  2021;208:112041.
            44.  Arduino I, Liu Z, Rahikkala A, et al. Preparation of cetyl      doi: 10.1016/j.colsurfb.2021.112041
               palmitate-based  PEGylated  solid  lipid  nanoparticles  by   56.  Hou X, Liu S, Wang M, et al. Layer-by-layer 3D constructs
               microfluidic technique. Acta Biomater. 2021;121:566-578.  of fibroblasts in hydrogel for examining transdermal
               doi: 10.1016/j.actbio.2020.12.024
                                                                  penetration capability of nanoparticles.  SLAS Technol.
            45.  Figueiredo P, Lintinen K, Kiriazis A, et al. In vitro evaluation   2017;22(4):447-453.
               of biodegradable lignin-based nanoparticles for drug      doi: 10.1177/2211068216655753
               delivery and enhanced antiproliferation effect in cancer   57.  do Amaral SR, Amantino CF, Atanasov A, et al. Evaluation
               cells. Biomaterials. 2017;121:97-108.              of photodynamic  therapy as a new therapeutic approach
               doi: 10.1016/j.biomaterials.2016.12.034
                                                                  using quinizarin-loaded nanocapsules: in vitro cytotoxicity,
            46.  Figueiredo P, Sipponen MH, Lintinen K, et al. Preparation   permeation in 3D bioprinted skin equivalent and in vitro
               and characterization of dentin phosphophoryn-derived   cytokines modulation. Preprints; 2024.
               peptide-functionalized lignin nanoparticles for enhanced      doi: 10.20944/preprints202405.1323.v1
               cellular uptake. Small. 2019;15(24):e1901427.   58.  Bhamare N, Tardalkar K, Khadilkar A, Parulekar P, Joshi
               doi: 10.1002/smll.201901427
                                                                  MG. Tissue engineering of human ear pinna.  Cell Tissue
            47.  Ahn M, Cho WW, Park W, et al. 3D biofabrication of diseased   Bank. 2022;23(3):441-457.
               human skin models in vitro. Biomater Res. 2023;27(1):80.     doi: 10.1007/s10561-022-09991-7
               doi: 10.1186/s40824-023-00415-5
                                                               59.  Bos EJ, Doerga P, Breugem CC, van Zuijlen PP. The burned
            48.  Cho SW, Malick H, Kim SJ, Grattoni A. Advances in skin-on-  ear; possibilities and challenges in framework reconstruction
               a-chip technologies for dermatological disease modeling. J   and coverage. Burns. 2016;42(7):1387-1395.
               Invest Dermatol. 2024;144(8):1707-1715.            doi: 10.1016/j.burns.2016.02.006
               doi: 10.1016/j.jid.2024.01.031
                                                               60.  Abaci A, Camci-Unal G, Guvendiren M, Guest E. Three-
            49.  Scheurer J, Sauer B, Focken J, et al. Histological and   dimensional  bioprinting  for  medical  applications.  MRS
               functional characterization of 3D human skin models   Bulletin. 2023;48(6):624-631.
               mimicking the inflammatory skin diseases psoriasis and      doi: 10.1557/s43577-023-00546-z
               atopic dermatitis. Dis Model Mech. 2024;17(1):dmm050541.  61.  Bernal PN, Delrot P, Loterie D, et al. Volumetric bioprinting
               doi: 10.1242/dmm.050541
                                                                  of complex living-tissue constructs within seconds.  Adv
            50.  Nuwayhid R, Schulz T, Siemers F, et al. A platform for   Mater. 2019;31(42):1904209.
               testing the biocompatibility of implants: silicone induces      doi: 10.1002/adma.201904209


            Volume 10 Issue 5 (2024)                        26                                doi: 10.36922/ijb.4273
   29   30   31   32   33   34   35   36   37   38   39