Page 36 - IJB-10-5
P. 36
International Journal of Bioprinting 3D bioprinting for nanoparticle evaluation
85. Baino F, Minguella-Canela J, Korkusuz F, et al. In vitro mimic the intestinal epithelial-stromal microenvironment.
assessment of bioactive glass coatings on alumina/ Biomater Adv. 2023;153:213534.
zirconia composite implants for potential use in prosthetic doi: 10.1016/j.bioadv.2023.213534
applications. Int J Mol Sci. 2019;20(3):722. 96. Murphy SV, De Coppi P, Atala A. Opportunities and
doi: 10.3390/ijms20030722
challenges of translational 3D bioprinting. Nat Biomed Eng.
86. Chen YW, Shen YF, Ho CC, et al. Osteogenic and angiogenic 2020;4(4):370-380.
potentials of the cell-laden hydrogel/mussel-inspired doi: 10.1038/s41551-019-0471-7
calcium silicate complex hierarchical porous scaffold 97. Dickman CTD, Russo V, Thain K, et al. Functional
fabricated by 3D bioprinting. Mate Sci Eng C, Mater Biol characterization of 3D contractile smooth muscle tissues
Appl. 2018;91:679-687. generated using a unique microfluidic 3D bioprinting
doi: 10.1016/j.msec.2018.06.005
technology. FASEB J. 2020;34(1):1652-1664.
87. Yang Z, Yi P, Liu Z, et al. Stem cell-laden hydrogel-based 3D doi: 10.1096/fj.201901063RR
bioprinting for bone and cartilage tissue engineering. Front 98. Maes L, Szabó A, Van Haevermaete J, et al. P035 3D bioprinting
Bioeng Biotechnol. 2022;10:865770. of gelatin derivatives: towards novel small intestinal in vitro
doi: 10.3389/fbioe.2022.865770
models. J Crohns Colitis. 2024;18(Supplement_1):i293-i293.
88. Zhang J, Eyisoylu H, Qin X-H, Rubert M, Müller R. 3D doi: 10.1093/ecco-jcc/jjad212.0165
bioprinting of graphene oxide-incorporated cell-laden 99. Mon A, Gervacio S, Aidnik H, Oxford S, Rosette C, Piu F.
bone mimicking scaffolds for promoting scaffold fidelity, Evaluation of the clinical stage FXR Agonist FXR314 in human
osteogenic differentiation and mineralization. Acta primary cell 3D models of Crohn’s disease and ulcerative
Biomaterialia. 2021;121:637-652. colitis. Inflamm Bowel Dis. 2024;30(Supplement_1):S59-S59.
doi: 10.1016/j.actbio.2020.12.026
doi: 10.1093/ibd/izae020.121
89. Zhang X, Cui J, Cheng L, Lin K. Enhancement of osteoporotic 100. Lee JM, Yeong WY. Design and printing strategies in 3D
bone regeneration by strontium-substituted 45S5 bioglass via bioprinting of cell-hydrogels: a review. Adv Healthc Mater.
time-dependent modulation of autophagy and the Akt/mTOR 2016;5(22):2856-2865.
signaling pathway. J Mater Chem B. 2021;9(16):3489-3501. doi: 10.1002/adhm.201600435
doi: 10.1039/d0tb02991b
101. Almutary AG, Alnuqaydan AM, Almatroodi SA, Bakshi
90. Souza L, Lopes JH, Encarnação D, et al. Comprehensive in HA, Chellappan DK, Tambuwala MM. Development of
vitro and in vivo studies of novel melt-derived Nb-substituted 3D-bioprinted colitis-mimicking model to assess epithelial
45S5 bioglass reveal its enhanced bioactive properties for barrier function using albumin nano-encapsulated anti-
bone healing. Sci Rep. 2018;8(1):12808. inflammatory drugs. Biomimetics (Basel). 2023;8(1):41.
doi: 10.1038/s41598-018-31114-0
doi: 10.3390/biomimetics8010041
91. Bellucci D, Cannillo V, Sola A, Chiellini F, Gazzarri M, 102. Garcés M, Cáceres L, Chiappetta D, Magnani N, Evelson P.
Migone C. Macroporous Bioglass®-derived scaffolds Current understanding of nanoparticle toxicity mechanisms
for bone tissue regeneration. Ceramics international. and interactions with biological systems. New J Chem.
2011;37(5):1575-1585. 2021;45(32):14328-14344.
doi: 10.1016/j.ceramint.2011.01.023
doi: 10.1039/D1NJ01415C
92. Wang X, Tolba E, Schröder HC, et al. Effect of bioglass on 103. Abbasi R, Shineh G, Mobaraki M, Doughty S, Tayebi L.
growth and biomineralization of SaOS-2 cells in hydrogel Structural parameters of nanoparticles affecting their
after 3D cell bioprinting. PLoS One. 2014;9(11):e112497. toxicity for biomedical applications: a review. J Nanopart
doi: 10.1371/journal.pone.0112497
Res. 2023;25(3):43.
93. Raveendran N, Vaswani K, Han P, Basu S, Moran CS, doi: 10.1007/s11051-023-05690-w
Ivanovski S. Modeling inflammatory response using 104. Buzea C, Pacheco I. 28 – Toxicity of nanoparticles. In:
3D bioprinting of polarized macrophages Int J Bioprint. Pacheco-Torgal F, Diamanti MV, Nazari A, Granqvist CG,
2024;10(2):2116. Pruna A, Amirkhanian S, eds. Nanotechnology in Eco-
doi: 10.36922/ijb.2116
Efficient Construction (Second Edition). Sawston, UK:
94. Roh TT, Chen Y, Paul HT, Guo C, Kaplan DL. 3D Woodhead Publishing; 2019:705-754.
bioengineered tissue model of the large intestine to study doi: 10.1016/B978-0-08-102641-0.00028-1
inflammatory bowel disease. Biomaterials. 2019;225:119517. 105. Egbuna C, Parmar VK, Jeevanandam J, et al. Toxicity of
doi: 10.1016/j.biomaterials.2019.119517
nanoparticles in biomedical application: nanotoxicology.
95. Torras N, Zabalo J, Abril E, Carré A, García-Díaz M, Martínez J Toxicol. 2021;2021(1):9954443.
E. A bioprinted 3D gut model with crypt-villus structures to doi: 10.1155/2021/9954443
Volume 10 Issue 5 (2024) 28 doi: 10.36922/ijb.4273

