Page 36 - IJB-10-5
P. 36

International Journal of Bioprinting                                3D bioprinting for nanoparticle evaluation




            85.  Baino  F, Minguella-Canela  J, Korkusuz  F,  et  al.  In vitro   mimic the intestinal epithelial-stromal microenvironment.
               assessment of bioactive glass coatings on alumina/  Biomater Adv. 2023;153:213534.
               zirconia composite implants for potential use in prosthetic      doi: 10.1016/j.bioadv.2023.213534
               applications. Int J Mol Sci. 2019;20(3):722.    96.  Murphy SV, De Coppi P, Atala A. Opportunities and
               doi: 10.3390/ijms20030722
                                                                  challenges of translational 3D bioprinting. Nat Biomed Eng.
            86.  Chen YW, Shen YF, Ho CC, et al. Osteogenic and angiogenic   2020;4(4):370-380.
               potentials of  the  cell-laden hydrogel/mussel-inspired   doi: 10.1038/s41551-019-0471-7
               calcium silicate complex hierarchical porous scaffold   97.  Dickman CTD, Russo V, Thain K, et al. Functional
               fabricated by 3D bioprinting.  Mate Sci Eng C, Mater Biol   characterization  of 3D  contractile  smooth  muscle  tissues
               Appl. 2018;91:679-687.                             generated using a  unique  microfluidic  3D  bioprinting
               doi: 10.1016/j.msec.2018.06.005
                                                                  technology. FASEB J. 2020;34(1):1652-1664.
            87.  Yang Z, Yi P, Liu Z, et al. Stem cell-laden hydrogel-based 3D      doi: 10.1096/fj.201901063RR
               bioprinting for bone and cartilage tissue engineering. Front   98.  Maes L, Szabó A, Van Haevermaete J, et al. P035 3D bioprinting
               Bioeng Biotechnol. 2022;10:865770.                 of gelatin derivatives: towards novel small intestinal in vitro
               doi: 10.3389/fbioe.2022.865770
                                                                  models. J Crohns Colitis. 2024;18(Supplement_1):i293-i293.
            88.  Zhang J, Eyisoylu H, Qin X-H, Rubert M, Müller R. 3D      doi: 10.1093/ecco-jcc/jjad212.0165
               bioprinting of graphene oxide-incorporated cell-laden   99.  Mon A, Gervacio S, Aidnik H, Oxford S, Rosette C, Piu F.
               bone mimicking scaffolds for promoting scaffold fidelity,   Evaluation of the clinical stage FXR Agonist FXR314 in human
               osteogenic differentiation and mineralization.  Acta   primary cell 3D models of Crohn’s disease and ulcerative
               Biomaterialia. 2021;121:637-652.                   colitis. Inflamm Bowel Dis. 2024;30(Supplement_1):S59-S59.
               doi: 10.1016/j.actbio.2020.12.026
                                                                  doi: 10.1093/ibd/izae020.121
            89.  Zhang X, Cui J, Cheng L, Lin K. Enhancement of osteoporotic   100. Lee JM, Yeong WY. Design and printing strategies in 3D
               bone regeneration by strontium-substituted 45S5 bioglass via   bioprinting of cell-hydrogels: a review. Adv Healthc Mater.
               time-dependent modulation of autophagy and the Akt/mTOR   2016;5(22):2856-2865.
               signaling pathway. J Mater Chem B. 2021;9(16):3489-3501.     doi: 10.1002/adhm.201600435
               doi: 10.1039/d0tb02991b
                                                               101. Almutary AG,  Alnuqaydan AM,  Almatroodi  SA,  Bakshi
            90.  Souza L, Lopes JH, Encarnação D, et al. Comprehensive in   HA, Chellappan DK, Tambuwala MM. Development of
               vitro and in vivo studies of novel melt-derived Nb-substituted   3D-bioprinted colitis-mimicking model to assess epithelial
               45S5 bioglass reveal its enhanced bioactive properties for   barrier function using albumin nano-encapsulated anti-
               bone healing. Sci Rep. 2018;8(1):12808.            inflammatory drugs. Biomimetics (Basel). 2023;8(1):41.
               doi: 10.1038/s41598-018-31114-0
                                                                  doi: 10.3390/biomimetics8010041
            91.  Bellucci D, Cannillo V, Sola A, Chiellini F, Gazzarri M,   102. Garcés M, Cáceres L, Chiappetta D, Magnani N, Evelson P.
               Migone C. Macroporous Bioglass®-derived scaffolds   Current understanding of nanoparticle toxicity mechanisms
               for bone tissue regeneration.  Ceramics international.   and  interactions  with  biological  systems.  New J Chem.
               2011;37(5):1575-1585.                              2021;45(32):14328-14344.
               doi: 10.1016/j.ceramint.2011.01.023
                                                                  doi: 10.1039/D1NJ01415C
            92.  Wang X, Tolba E, Schröder HC, et al. Effect of bioglass on   103. Abbasi R, Shineh  G, Mobaraki  M, Doughty S,  Tayebi L.
               growth and biomineralization of SaOS-2 cells in hydrogel   Structural parameters of nanoparticles affecting their
               after 3D cell bioprinting. PLoS One. 2014;9(11):e112497.  toxicity for biomedical applications: a review.  J Nanopart
               doi: 10.1371/journal.pone.0112497
                                                                  Res. 2023;25(3):43.
            93.  Raveendran N, Vaswani K, Han P, Basu S, Moran CS,      doi: 10.1007/s11051-023-05690-w
               Ivanovski S. Modeling inflammatory response using   104. Buzea C, Pacheco I. 28 – Toxicity of nanoparticles. In:
               3D bioprinting of polarized macrophages  Int J Bioprint.   Pacheco-Torgal F, Diamanti MV, Nazari A, Granqvist CG,
               2024;10(2):2116.                                   Pruna A, Amirkhanian S, eds.  Nanotechnology in Eco-
               doi: 10.36922/ijb.2116
                                                                  Efficient Construction (Second Edition). Sawston, UK:
            94.  Roh TT, Chen Y, Paul HT, Guo C, Kaplan DL. 3D    Woodhead Publishing; 2019:705-754.
               bioengineered tissue model of the large intestine to study      doi: 10.1016/B978-0-08-102641-0.00028-1
               inflammatory bowel disease. Biomaterials. 2019;225:119517.  105. Egbuna C, Parmar VK, Jeevanandam J, et al. Toxicity of
               doi: 10.1016/j.biomaterials.2019.119517
                                                                  nanoparticles in biomedical application: nanotoxicology.
            95.  Torras N, Zabalo J, Abril E, Carré A, García-Díaz M, Martínez   J Toxicol. 2021;2021(1):9954443.
               E. A bioprinted 3D gut model with crypt-villus structures to   doi: 10.1155/2021/9954443




            Volume 10 Issue 5 (2024)                        28                                doi: 10.36922/ijb.4273
   31   32   33   34   35   36   37   38   39   40   41