Page 15 - IJB-6-1
P. 15

Yu and Jiang
               Using Machine Learning  Approaches.  J  Manuf Sci Eng,   DOI: 10.1016/j.rcim.2019.01.004.
               139:091005. DOI: 10.1115/1.4036641.             32.  Jiang J, Hu G, Li X, et al., 2019, Analysis and Prediction of
           26.  Scime L, Beuth J, 2019, Using Machine Learning to Identify   Printable Bridge Length in Fused Deposition Modelling Based
               in situ Melt Pool Signatures Indicative of Flaw Formation in   on Back Propagation Neural Network. Virtual Phys Prototyp,
               a Laser Powder Bed Fusion Additive Manufacturing Process.   14:253–66. DOI: 10.1080/17452759.2019.1576010.
               Addit Manuf, 25:151–65. DOI: 10.1016/j.addma.2018.11.010.  33.  Caruana R, Niculescu-Mizil  A, 2006,  An Empirical
           27.  Caggiano  A,  Zhang  J,  Alfieri  V,  et al., 2019, Machine   Comparison of Supervised Learning  Algorithms. In:
               Learning-based Image Processing for On-Line Defect   ACM International  Conference  Proceeding  Series.  ACM,
               Recognition in Additive Manufacturing. CIRP Ann, 68:451–4.   Pittsburgh. pp. 161–8. DOI: 10.1145/1143844.1143865.
               DOI: 10.1016/j.cirp.2019.03.021.                34.  Francis L, 2014, Unsupervised Learning.  In: Predictive
           28.  Zhang B, Liu S, Shin YC, 2019, In-Process Monitoring of   Modeling  Applications in  Actuarial Science.  Predictive
               Porosity During Laser Additive Manufacturing Process. Addit   Modeling Techniques. Vol. 1. Cambridge University Press,
               Manuf, 28:497–505. DOI: 10.1016/j.addma.2019.05.030.  Philadelphia, PA.
           29.  Gu GX, Chen CT, Richmond DJ,  et al, 2018, Bioinspired   35.  Arulkumaran K, Deisenroth MP, Brundage M, et al., 2017,
               Hierarchical  Composite  Design Using Machine  Learning:   Deep Reinforcement Learning: A Brief Survey. IEEE Signal
               Simulation, Additive Manufacturing, and Experiment. Mater   Process Mag, 34:26–38. DOI: 10.1109/msp.2017.2743240.
               Horizons, 5:939–45. DOI: 10.1039/c8mh00653a.    36.  Jordan MI, Mitchell TM, 2015, Machine Learning: Trends,
           30.  Hamel  CM, Roach  DJ, Long  KN,  et  al., 2019,  Machine-  Perspectives, and Prospects. Science, 349:255–60.
               Learning  Based Design of  Active  Composite  Structures   37.  Xie  M,  Gao  Q,  Zhao  H,  et al., 2019, Electro-Assisted
               for 4D Printing.  Smart Mater Struct, 28:065005. DOI:   Bioprinting  of  Low-Concentration  GelMA  Microdroplets.
               10.1088/1361-665X/ab1439.                           Small, 15:1804216. DOI: 10.1002/smll.201804216.
           31.  Li Z, Zhang Z, Shi J,  et al., 2019, Prediction  of Surface   38.  Jiang J, Stringer J, Xu X, 2019, Support Optimization for Flat
               Roughness in Extrusion-Based Additive Manufacturing with   Features via Path Planning in Additive  Manufacturing.  3D
               Machine Learning. Robot Comput Integr Manuf, 57:488–95.   Print Addit Manuf, 6:171–9. DOI: 10.1089/3dp.2017.0124.









































                                       International Journal of Bioprinting (2020)–Volume 6, Issue 1        11
   10   11   12   13   14   15   16   17   18   19   20