Page 15 - IJB-6-1
P. 15
Yu and Jiang
Using Machine Learning Approaches. J Manuf Sci Eng, DOI: 10.1016/j.rcim.2019.01.004.
139:091005. DOI: 10.1115/1.4036641. 32. Jiang J, Hu G, Li X, et al., 2019, Analysis and Prediction of
26. Scime L, Beuth J, 2019, Using Machine Learning to Identify Printable Bridge Length in Fused Deposition Modelling Based
in situ Melt Pool Signatures Indicative of Flaw Formation in on Back Propagation Neural Network. Virtual Phys Prototyp,
a Laser Powder Bed Fusion Additive Manufacturing Process. 14:253–66. DOI: 10.1080/17452759.2019.1576010.
Addit Manuf, 25:151–65. DOI: 10.1016/j.addma.2018.11.010. 33. Caruana R, Niculescu-Mizil A, 2006, An Empirical
27. Caggiano A, Zhang J, Alfieri V, et al., 2019, Machine Comparison of Supervised Learning Algorithms. In:
Learning-based Image Processing for On-Line Defect ACM International Conference Proceeding Series. ACM,
Recognition in Additive Manufacturing. CIRP Ann, 68:451–4. Pittsburgh. pp. 161–8. DOI: 10.1145/1143844.1143865.
DOI: 10.1016/j.cirp.2019.03.021. 34. Francis L, 2014, Unsupervised Learning. In: Predictive
28. Zhang B, Liu S, Shin YC, 2019, In-Process Monitoring of Modeling Applications in Actuarial Science. Predictive
Porosity During Laser Additive Manufacturing Process. Addit Modeling Techniques. Vol. 1. Cambridge University Press,
Manuf, 28:497–505. DOI: 10.1016/j.addma.2019.05.030. Philadelphia, PA.
29. Gu GX, Chen CT, Richmond DJ, et al, 2018, Bioinspired 35. Arulkumaran K, Deisenroth MP, Brundage M, et al., 2017,
Hierarchical Composite Design Using Machine Learning: Deep Reinforcement Learning: A Brief Survey. IEEE Signal
Simulation, Additive Manufacturing, and Experiment. Mater Process Mag, 34:26–38. DOI: 10.1109/msp.2017.2743240.
Horizons, 5:939–45. DOI: 10.1039/c8mh00653a. 36. Jordan MI, Mitchell TM, 2015, Machine Learning: Trends,
30. Hamel CM, Roach DJ, Long KN, et al., 2019, Machine- Perspectives, and Prospects. Science, 349:255–60.
Learning Based Design of Active Composite Structures 37. Xie M, Gao Q, Zhao H, et al., 2019, Electro-Assisted
for 4D Printing. Smart Mater Struct, 28:065005. DOI: Bioprinting of Low-Concentration GelMA Microdroplets.
10.1088/1361-665X/ab1439. Small, 15:1804216. DOI: 10.1002/smll.201804216.
31. Li Z, Zhang Z, Shi J, et al., 2019, Prediction of Surface 38. Jiang J, Stringer J, Xu X, 2019, Support Optimization for Flat
Roughness in Extrusion-Based Additive Manufacturing with Features via Path Planning in Additive Manufacturing. 3D
Machine Learning. Robot Comput Integr Manuf, 57:488–95. Print Addit Manuf, 6:171–9. DOI: 10.1089/3dp.2017.0124.
International Journal of Bioprinting (2020)–Volume 6, Issue 1 11

