Page 14 - IJB-6-1
P. 14
Machine learning in bioprinting
5:237. DOI: 10.18063/ijb.v5i2.1.237. 10.1080/0951192X.2018.1466398.
2. Jiang J, Weng F, Gao S, et al., 2019, A Support Interface 14. Jiang J, Lou J, Hu G, 2019, Effect of Support on
Method for Easy Part Removal in Direct Metal Deposition. Printed Properties in Fused Deposition Modelling
Manuf Lett, 20:30–3. DOI: 10.1016/j.mfglet.2019.04.002. Processes. Virtual Phys Prototyp, 14:308–15. DOI:
3. Liu J, Gaynor AT, Chen S, et al., 2018, Current and Future 10.1080/17452759.2019.1568835.
Trends in Topology Optimization for Additive Manufacturing. 15. Ng WL, Chua CK, Shen YF, 2019, Print Me An Organ! Why
Struct Multidiscipl Optim, 57:2457–83. DOI: 10.1007/ We Are Not There Yet. Prog Polym Sci, 97:101145. DOI:
s00158-018-1994-3. 10.1016/j.progpolymsci.2019.101145.
4. Jiang J, Xu X, Stringer J, 2018, Support Structures for 16. Derakhshanfar S, Mbeleck R, Xu K, et al., 2018, 3D
Additive Manufacturing: A Review. J Manuf Mater Process, Bioprinting for Biomedical Devices and Tissue Engineering:
2:64. DOI: 10.3390/jmmp2040064. A Review of Recent Trends and Advances. Bioact Mater,
5. Jiang J, Xu X, Stringer J, 2019, Optimisation of Multi- 3:144–56. DOI: 10.1016/j.bioactmat.2017.11.008.
part Production in Additive Manufacturing for Reducing 17. Aoyagi K, Wang H, Sudo H, et al., 2019, Simple Method to
Support Waste. Virtual Phys Prototyp, 14:219–28. DOI: Construct Process Maps for Additive Manufacturing Using
10.1080/17452759.2019.1585555. a Support Vector Machine. Addit Manuf, 27:353–62. DOI:
6. Weng F, Gao S, Jiang J, et al., 2019, A Novel Strategy to 10.1016/j.addma.2019.03.013.
Fabricate Thin 316L Stainless Steel Rods by Continuous 18. Menon A, Póczos B, Feinberg AW, et al., 2019, Optimization
Direct Metal Deposition in Z Direction. Addit Manuf, of Silicone 3D Printing with Hierarchical Machine Learning.
27:474–81. DOI: 10.1016/j.addma.2019.03.024. 3D Print Addit Manuf, 6:181–9. DOI: 10.1089/3dp.2018.0088.
7. Jiang J, Xu X, Stringer J, 2018, A New Support Strategy 19. He H, Yang Y, Pan Y, 2019, Machine Learning for Continuous
for Reducing Waste in Additive Manufacturing. In: The Liquid Interface Production: Printing Speed Modelling.
48 International Conference on Computers and Industrial J Manuf Syst, 50:236–46. DOI: 10.1016/j.jmsy.2019.01.004.
th
Engineering (CIE 48). Curran Associates, Inc., Auckland. 20. Stavroulakis P, Chen S, Delorme C, et al., 2019, Rapid
pp. 1–7. Tracking of Extrinsic Projector Parameters in Fringe
8. Jiang J, Stringer J, Xu X, et al., 2018, A Benchmarking Part Projection Using Machine Learning. Opt Lasers Eng,
for Evaluating and Comparing Support Structures of Additive 114:7–14. DOI: 10.1016/j.optlaseng.2018.08.018.
Manufacturing. In: 3 International Conference on Progress 21. Baturynska I, Semeniuta O, Martinsen K, 2018, Optimization
rd
in Additive Manufacturing (Pro-AM 2018). Singapore. of Process Parameters for Powder Bed Fusion Additive
pp. 196–202. Manufacturing by Combination of Machine Learning and
9. Lv S, Nie J, Gao Q, et al., 2019, Micro/Nanofabrication Finite Element Method: A Conceptual Framework. In:
of Brittle Hydrogels Using 3D Printed Soft Ultrafine Fiber Procedia CIRP. Elsevier B.V., Heidelberg. pp. 227–32. DOI:
Molds for Damage-free Demolding. Biofabrication. DOI: 10.1016/j.procir.2017.12.204.
10.1088/1758-5090/ab57d8. 22. Francis J, Bian L, 2019, Deep Learning for Distortion
10. Nie J, Gao Q, Wang Y, et al., 2018, Vessel-on-a-chip with Prediction in Laser-Based Additive Manufacturing
Hydrogel-Based Microfluidics. Small, 14:1802368. DOI: Using Big Data. Manuf Lett, 20:10–4. DOI: 10.1016/j.
10.1002/smll.201802368. mfglet.2019.02.001.
11. An J, Chua CK, Mironov V, 2016, A Perspective on 4D 23. Khanzadeh M, Rao P, Jafari-Marandi R, et al., 2018,
Bioprinting. Int J Bioprinting, 2:3–5. DOI: 10.18063/ Quantifying Geometric Accuracy with Unsupervised
IJB.2016.01.003. Machine Learning: Using Self-Organizing Map on Fused
12. Jiang J, Xu X, Stringer J, 2019, Optimization of Process Filament Fabrication Additive Manufacturing Parts. J Manuf
Planning for Reducing Material Waste in Extrusion Based Sci Eng, 140:301011. DOI: 10.1115/1.4038598.
Additive Manufacturing. Robot Comput Integr Manuf, 24. Zhu Z, Anwer N, Huang Q, et al., 2018, Machine Learning
59:317–25. DOI: 10.1016/j.rcim.2019.05.007. in Tolerancing for Additive Manufacturing. CIRP Ann,
13. Jiang J, Stringer J, Xu X, et al., 2018, Investigation 67:157–60. DOI: 10.1016/j.cirp.2018.04.119.
of Printable Threshold Overhang Angle in Extrusion- 25. Tootooni MS, Dsouza A, Donovan R, et al., 2017, Classifying
based Additive Manufacturing for Reducing Support the Dimensional Variation in Additive Manufactured Parts
Waste. Int J Comput Integr Manuf, 31:961–9. DOI: from Laser-Scanned Three-Dimensional Point Cloud Data
10 International Journal of Bioprinting (2020)–Volume 6, Issue 1

