Page 30 - IJB-6-1
P. 30
Digital light processing based 3D printing for medical applications
Migration Within 3D Layer-By-Layer Microfabricated Lett, 38(2):203–11. DOI: 10.1007/s10529-015-1975-1.
Photocrosslinked PEG Scaffolds with Tunable Stiffness. 58. Scaglione MS, Kliethermes S, Cao G, et al., 2015, The
Biomaterials, 33(29):7064–70. DOI: 10.1016/j. Epidemiology of Cirrhosis in the United States A Population-
biomaterials.2012.06.012. based Study. Orig Artic, 49:7.
46. Peery AF, Crockett SD, Murphy CC, et al., 2019, Burden and 59. Cheung DY, Duan B, Butcher JT, 2015, Current Progress in
Cost of Gastrointestinal, Liver, and Pancreatic Diseases in the Tissue Engineering of Heart Valves: Multiscale Problems,
United States: Update 2018. Gastroenterology, 156(1):254– Multiscale Solutions. Expert Opin Biol Ther, 15(8):18.
72, e211. DOI: 10.1053/j.gastro.2018.08.063. 60. Nguyen AH, Marsh P, Schmiess-Heine L, et al., 2019, Cardiac
47. Zhu W, Qu X, Zhu J, et al., 2017, Direct 3D Bioprinting Tissue Engineering: State-of-the-art Methods and Outlook.
of Prevascularized Tissue Constructs with Complex J Biol Eng, 13:57. DOI: 10.1186/s13036-019-0185-0.
Microarchitecture. Biomaterials, 124:106–15. DOI: 61. Liu J, He J, Liu J, et al., 2019, Rapid 3D Bioprinting of in
10.1016/j.biomaterials.2017.01.042. vitro Cardiac Tissue Models Using Human Embryonic Stem
48. Ma X, Qu X, Zhu W, et al., 2016, Deterministically Patterned Cell-Derived Cardiomyocytes. Bioprinting, 13: e00040.
Biomimetic Human iPSC-Derived Hepatic Model Via Rapid DOI: 10.1016/j.bprint.2019.e00040.
3D Bioprinting. Proc Natl Acad Sci U S A, 113(8):2206–11. 62. Ma ZLY, Yang Y, Wang J, et al., 2019, Research Progress and
DOI: 10.1073/pnas.1524510113. Prospects of Tissue Engineering Scaffolds for Spinal Cord
49. Petersen TH, Calle EA, Zhao L, et al., 2010, Tissue- Injury Repair and Protection. Regen Med, 14(9):887–98.
Engineered Lungs for in vivo Implantation. Science, 329:5. 63. Ashammakhi N, Kim H, Ehsanipour A, et al., 2019,
50. Horvath L, Umehara Y, Jud C, et al., 2015, Engineering an in Regenerative Therapy for Spinal Cord Injury. Tissue Eng
vitro Air-Blood Barrier by 3D Bioprinting. Sci Rep, 5:7974. Part B Rev. DOI: 10.1089/ten.TEB.2019.0182.
DOI: 10.1038/srep07974. 64. Duan B, Hockaday LA, Kang KH, et al., 2013, 3D Bioprinting
51. Dean D, Jonathan W, Siblani A, et al., 2012, Continuous of Heterogeneous Aortic Valve Conduits with Alginate/
Digital Light Processing (cDLP): Highly Accurate Gelatin Hydrogels. J Biomed Mater Res A, 101(5):1255–64.
Additive Manufacturing of Tissue Engineered Bone DOI: 10.1002/jbm.a.34420.
Scaffolds. Virtual Phys Prototyp, 7(1):13–24. DOI: 65. Pedde RD, Mirani B, Navaei A, et al., 2017, Emerging
10.1080/17452759.2012.673152. Biofabrication Strategies for Engineering Complex Tissue
52. Lim KS, Levato R, Costa PF, et al., 2018, Bio-Resin for High Constructs. Adv Mater, 29(19): e1606061. DOI: 10.1002/
Resolution Lithography-Based Biofabrication of Complex adma.201606061.
Cell-Laden Constructs. Biofabrication, 10(3):034101. DOI: 66. Amir-Aslani A, Mangematin V, 2010, The Future of Drug
10.1088/1758-5090/aac00c. Discovery and Development: Shifting Emphasis Towards
53. Ma X, Dewan S, Liu J, et al., 2019, 3D Printed Micro-Scale Personalized Medicine. Technol Forecast Soc Change,
Force Gauge Arrays to Improve Human Cardiac Tissue 77(2):203–17. DOI: 10.1016/j.techfore.2009.09.005.
Maturation and Enable High Throughput Drug Testing. Acta 67. Trenfield SJ, Awad A, Goyanes A, et al., 2018, 3D Printing
Biomater, 95:319–27. DOI: 10.1016/j.actbio.2018.12.026. Pharmaceuticals: Drug Development to Frontline Care.
54. Koffler J, Zhu W, Qu X, et al., 2019, Biomimetic 3D-Printed Trends Pharmacol Sci, 39(5):440–51. DOI: 10.1016/j.
Scaffolds for Spinal Cord Injury Repair. Nat Med, 25(2):263– tips.2018.02.006.
9. DOI: 10.1038/s41591-018-0296-z. 68. Mateen R, Ali MM, Hoare T, 2018, A Printable Hydrogel
55. Mourino V, Boccaccini AR, 2010, Bone Tissue Engineering Microarray for Drug Screening Avoids False Positives
Therapeutics: Controlled Drug Delivery in Three- Associated with Promiscuous Aggregating Inhibitors. Nat
Dimensional Scaffolds. J R Soc Interface, 7(43):209–27. Commun, 9(1):602. DOI: 10.1038/s41467-018-02956-z.
DOI: 10.1098/rsif.2009.0379. 69. Fan Y, Nguyen DT, Akay Y, et al., 2016, Engineering a Brain
56. Seitz H, Rieder W, Irsen S, et al., 2005, Three-Dimensional Cancer Chip for High-throughput Drug Screening. Sci Rep,
Printing of Porous Ceramic Scaffolds for Bone Tissue 6:25062. DOI: 10.1038/srep25062.
Engineering. J Biomed Mater Res B Appl Biomater, 70. Zhang YS, Yue K, Aleman J, et al., 2017, 3D Bioprinting for
74(2):782–8. DOI: 10.1002/jbm.b.30291. Tissue and Organ Fabrication. Ann Biomed Eng, 45(1):148–
57. Gao G, Cui X, 2016, Three-Dimensional Bioprinting in 63. DOI: 10.1007/s10439-016-1612-8.
Tissue Engineering and Regenerative Medicine. Biotechnol 71. 2015, First 3D-Printed Pill. Nat Biotechnol, 33(10):1014.
26 International Journal of Bioprinting (2020)–Volume 6, Issue 1

