Page 76 - IJB-6-1
P. 76

Bioprinting of multimaterials with computer-aided design/computer-aided manufacturing
               pp. 2230-2233. DOI: 10.1109/sensor.2009.5285591.    Process with Part Annealing. Google Patents.
           19.  Zhuang P, Ng WL, An J, et al., Layer-by-layer Ultraviolet   34.  Barnett E, Gosselin C, 2015, Weak Support Material Techniques
               Assisted Extrusion-based (UAE) Bioprinting  of Hydrogel   for Alternative Additive  Manufacturing  Materials.  Addit
               Constructs  with  High  Aspect  Ratio  for Soft  Tissue   Manufac, 8:95–104. DOI: 10.1016/j.addma.2015.06.002.
               Engineering  Applications.  PLoS One,  14:e0216776.  DOI:   35.  Yap CY, Chua CK, Dong ZL, et al., 2015, Review of Selective
               10.1371/journal.pone.0216776.                       Laser Melting: Materials and Applications. Appl Phys Rev,
           20.  Peppas  NA,  Hilt  JZ,  Khademhosseini  A,  et  al.,  2006,   2:041101.
               Hydrogels in Biology and Medicine: From Molecular   36.  Loh LE, Chua CK,  Yeong  WY,  et al., 2015, Numerical
               Principles to Bionanotechnology. Adv Mater, 18:1345-1360.   Investigation  and an Effective  Modelling  on the  Selective
               DOI: 10.1002/adma.200501612.                        Laser Melting (SLM) Process with Aluminium Alloy 6061.
           21.  O’Brien  FJ, 2011, Biomaterials  and Scaffolds for  Tissue   Int  J  Heart  Mass Transfer,  80:288–300.  DOI: 10.1016/j.
               Engineering. Mater Today, 14:88–95.                 ijheatmasstransfer.2014.09.014.
           22.  Place ES, Evans ND, Stevens MM, 2009, Complexity  in   37.  Sun Z, Tan X, Tor SB, et al., 2018, Simultaneously Enhanced
               Biomaterials for Tissue Engineering. Nat Mater, 8:457–470.  Strength and Ductility for 3D-printed Stainless steel 316L by
           23.  Hubbell JA, 1995, Biomaterials in Tissue Engineering. Nat   Selective Laser Melting. NPG Asia Mater, 10:127–136. DOI:
               Biotech, 13:565–576.                                10.1038/s41427-018-0018-5.
           24.  Malda J, Visser J, Melchels FP, et al., 2013, 25  Anniversary   38.  Li Y, Zhou K, Tan P, et al., 2018, Modeling Temperature and
                                                th
               Article:  Engineering Hydrogels for Biofabrication.  Adv.   Residual Stress Fields in Selective Laser Melting. Int J Mech
               Mater, 25:5011–5028. DOI: 10.1002/adma.201302042.   Sci, 136:24–35.
           25.  Lee JM, Yeong WY, 2016, Design and Printing Strategies in   39.  Tan X, Kok Y, Tan YJ, et al., 2015, Graded Microstructure
               3D Bioprinting of Cell-Hydrogels: A Review. Adv Healthc   and Mechanical  Properties of  Additive  Manufactured  Ti–
               Mater, 5:2856–2865. DOI: 10.1002/adhm.201600435.    6Al–4V Via Electron Beam Melting. Acta Mater, 97:1–16.
           26.  Takagi D, Lin W, Matsumoto T, et al., 2019, High-precision   DOI: 10.1016/j.actamat.2015.06.036.
               3D Inkjet  Technology  for Live  Cell  Bioprinting.  Int  J   40.  Yu WH, Sing SL, Chua CK, et al., 2019, Influence of Re-
               Bioprint, 5:208. DOI: 10.18063/ijb.v5i2.208.        melting  on Surface Roughness and Porosity of AlSi10Mg
           27.  Tan HW,  Tran  T, Chua CK, 2016,  A Review of Printed   Parts Fabricated by Selective Laser Melting. J Alloys Compd,
               Passive Electronic Components  Through Fully  Additive   792:574–581. DOI: 10.1016/j.jallcom.2019.04.017.
               Manufacturing Methods. Virtual Phys Prototyp, 11:271–288.   41.  Yu WH, Sing SL, Chua CK, et al., 2019, Particle-Reinforced
               DOI: 10.1080/17452759.2016.1217586.                 Metal Matrix Nanocomposites Fabricated by Selective Laser
           28.  Saengchairat N, Tran T, Chua CK, 2017, A Review: Additive   Melting: A State of the Art Review. Prog Mater Sci, 104:330–
               Manufacturing for Active Electronic Components. Virtual Phys   379. DOI: 10.1016/j.pmatsci.2019.04.006.
               Prototyp, 12:31–46. DOI: 10.1080/17452759.2016.1253181.  42.  Kuo CN, Chua CK, Peng PC,  et  al., 2020, Microstructure
           29.  Yap  YL,  Yeong  WY, 2015, Shape Recovery  Effect  of 3D   Evolution and Mechanical Property Response via 3D Printing
               Printed  Polymeric  Honeycomb.  Virtual  Phys Prototyp,   Parameter Development of Al–Sc Alloy. Virtual Phys Prototyp,
               10:91–99.                                           15:120–129. DOI: 10.1080/17452759.2019.1698967.
           30.  Francis  V, Jain  PK, 2016, Experimental  Invesitgations  on   43.  Tey CF, Tan X, Sing SL, et al., Additive Manufacturing of
               Fused Deposition Modelling of Polymer-layered  Silicate   Multiple  Materials by Selective  Laser Melting: Ti-alloy  to
               Nanocomposite.  Virtual  Phys  Prototyp,  11:109–121.  DOI:   Stainless Steel  via a Cu-alloy  Interlayer.  Addit.  Manufact,
               10.1080/17452759.2016.1172431.                      31:100970. DOI: 10.1016/j.addma.2019.100970.
           31.  Meisel N, Williams C, 2015, An Investigation of Key Design   44.  Tan JHK, Sing SL, Yeong WY, 2020, Microstructure Modelling
               for  Additive Manufacturing Constraints in Multimaterial   for Metallic Additive Manufacturing: A Review. Virtual Phys
               Three-Dimensional Printing. J Mech Des, 137:111406. DOI:   Prototyp, 15:87–105. DOI: 10.1080/17452759.2019.1677345.
               10.1115/1.4030991.                              45.  Lee JY, Tan WS, An J, et al., 2016, The Potential to Enhance
           32.  Gan MX,  Wong CH, 2016, Practical  Support Structures   Membrane  Module Design with 3D Printing  Technology.
               for  Selective  Laser  Melting.  J  Mater  Processing  Technol,   J Membr Sci, 499:480–490.
               238:474–484. DOI: 10.1016/j.jmatprotec.2016.08.006.  46.  Yuan S, Shen F, Chua CK, et al., 2019, Polymeric Composites
           33.  Rodgers LM, 2012, Extrusion-based Additive Manufacturing   for Powder-based  Additive Manufacturing:  Materials  and

           72                          International Journal of Bioprinting (2020)–Volume 6, Issue 1
   71   72   73   74   75   76   77   78   79   80   81