Page 76 - IJB-6-1
P. 76
Bioprinting of multimaterials with computer-aided design/computer-aided manufacturing
pp. 2230-2233. DOI: 10.1109/sensor.2009.5285591. Process with Part Annealing. Google Patents.
19. Zhuang P, Ng WL, An J, et al., Layer-by-layer Ultraviolet 34. Barnett E, Gosselin C, 2015, Weak Support Material Techniques
Assisted Extrusion-based (UAE) Bioprinting of Hydrogel for Alternative Additive Manufacturing Materials. Addit
Constructs with High Aspect Ratio for Soft Tissue Manufac, 8:95–104. DOI: 10.1016/j.addma.2015.06.002.
Engineering Applications. PLoS One, 14:e0216776. DOI: 35. Yap CY, Chua CK, Dong ZL, et al., 2015, Review of Selective
10.1371/journal.pone.0216776. Laser Melting: Materials and Applications. Appl Phys Rev,
20. Peppas NA, Hilt JZ, Khademhosseini A, et al., 2006, 2:041101.
Hydrogels in Biology and Medicine: From Molecular 36. Loh LE, Chua CK, Yeong WY, et al., 2015, Numerical
Principles to Bionanotechnology. Adv Mater, 18:1345-1360. Investigation and an Effective Modelling on the Selective
DOI: 10.1002/adma.200501612. Laser Melting (SLM) Process with Aluminium Alloy 6061.
21. O’Brien FJ, 2011, Biomaterials and Scaffolds for Tissue Int J Heart Mass Transfer, 80:288–300. DOI: 10.1016/j.
Engineering. Mater Today, 14:88–95. ijheatmasstransfer.2014.09.014.
22. Place ES, Evans ND, Stevens MM, 2009, Complexity in 37. Sun Z, Tan X, Tor SB, et al., 2018, Simultaneously Enhanced
Biomaterials for Tissue Engineering. Nat Mater, 8:457–470. Strength and Ductility for 3D-printed Stainless steel 316L by
23. Hubbell JA, 1995, Biomaterials in Tissue Engineering. Nat Selective Laser Melting. NPG Asia Mater, 10:127–136. DOI:
Biotech, 13:565–576. 10.1038/s41427-018-0018-5.
24. Malda J, Visser J, Melchels FP, et al., 2013, 25 Anniversary 38. Li Y, Zhou K, Tan P, et al., 2018, Modeling Temperature and
th
Article: Engineering Hydrogels for Biofabrication. Adv. Residual Stress Fields in Selective Laser Melting. Int J Mech
Mater, 25:5011–5028. DOI: 10.1002/adma.201302042. Sci, 136:24–35.
25. Lee JM, Yeong WY, 2016, Design and Printing Strategies in 39. Tan X, Kok Y, Tan YJ, et al., 2015, Graded Microstructure
3D Bioprinting of Cell-Hydrogels: A Review. Adv Healthc and Mechanical Properties of Additive Manufactured Ti–
Mater, 5:2856–2865. DOI: 10.1002/adhm.201600435. 6Al–4V Via Electron Beam Melting. Acta Mater, 97:1–16.
26. Takagi D, Lin W, Matsumoto T, et al., 2019, High-precision DOI: 10.1016/j.actamat.2015.06.036.
3D Inkjet Technology for Live Cell Bioprinting. Int J 40. Yu WH, Sing SL, Chua CK, et al., 2019, Influence of Re-
Bioprint, 5:208. DOI: 10.18063/ijb.v5i2.208. melting on Surface Roughness and Porosity of AlSi10Mg
27. Tan HW, Tran T, Chua CK, 2016, A Review of Printed Parts Fabricated by Selective Laser Melting. J Alloys Compd,
Passive Electronic Components Through Fully Additive 792:574–581. DOI: 10.1016/j.jallcom.2019.04.017.
Manufacturing Methods. Virtual Phys Prototyp, 11:271–288. 41. Yu WH, Sing SL, Chua CK, et al., 2019, Particle-Reinforced
DOI: 10.1080/17452759.2016.1217586. Metal Matrix Nanocomposites Fabricated by Selective Laser
28. Saengchairat N, Tran T, Chua CK, 2017, A Review: Additive Melting: A State of the Art Review. Prog Mater Sci, 104:330–
Manufacturing for Active Electronic Components. Virtual Phys 379. DOI: 10.1016/j.pmatsci.2019.04.006.
Prototyp, 12:31–46. DOI: 10.1080/17452759.2016.1253181. 42. Kuo CN, Chua CK, Peng PC, et al., 2020, Microstructure
29. Yap YL, Yeong WY, 2015, Shape Recovery Effect of 3D Evolution and Mechanical Property Response via 3D Printing
Printed Polymeric Honeycomb. Virtual Phys Prototyp, Parameter Development of Al–Sc Alloy. Virtual Phys Prototyp,
10:91–99. 15:120–129. DOI: 10.1080/17452759.2019.1698967.
30. Francis V, Jain PK, 2016, Experimental Invesitgations on 43. Tey CF, Tan X, Sing SL, et al., Additive Manufacturing of
Fused Deposition Modelling of Polymer-layered Silicate Multiple Materials by Selective Laser Melting: Ti-alloy to
Nanocomposite. Virtual Phys Prototyp, 11:109–121. DOI: Stainless Steel via a Cu-alloy Interlayer. Addit. Manufact,
10.1080/17452759.2016.1172431. 31:100970. DOI: 10.1016/j.addma.2019.100970.
31. Meisel N, Williams C, 2015, An Investigation of Key Design 44. Tan JHK, Sing SL, Yeong WY, 2020, Microstructure Modelling
for Additive Manufacturing Constraints in Multimaterial for Metallic Additive Manufacturing: A Review. Virtual Phys
Three-Dimensional Printing. J Mech Des, 137:111406. DOI: Prototyp, 15:87–105. DOI: 10.1080/17452759.2019.1677345.
10.1115/1.4030991. 45. Lee JY, Tan WS, An J, et al., 2016, The Potential to Enhance
32. Gan MX, Wong CH, 2016, Practical Support Structures Membrane Module Design with 3D Printing Technology.
for Selective Laser Melting. J Mater Processing Technol, J Membr Sci, 499:480–490.
238:474–484. DOI: 10.1016/j.jmatprotec.2016.08.006. 46. Yuan S, Shen F, Chua CK, et al., 2019, Polymeric Composites
33. Rodgers LM, 2012, Extrusion-based Additive Manufacturing for Powder-based Additive Manufacturing: Materials and
72 International Journal of Bioprinting (2020)–Volume 6, Issue 1

