Page 77 - IJB-6-1
P. 77

Lee, et al.
               Applications. Prog Polym Sci, 91:141–168. DOI: 10.1016/j.  Printing of Scaffolds and Tissues. Engineering, 1:261–268.
               progpolymsci.2018.11.001.                       58.  Liu F, Mishbak H, Bartolo PJ, 2019, Hybrid Polycaprolactone/
           47.  Lee JY, An J, Chua CK, 2017, Fundamentals and Applications   Hydrogel  Scaffold  Fabrication  and  in-process  Plasma
               of 3D Printing for Novel Materials.  Appl Mater Today,   Treatment Using PABS. 5:1–9.
               7:120–133.                                      59.  Schuurman W, Khristov V, Pot MW, et al., 2011, Bioprinting
           48.  Horváth L, Umehara Y, Jud C, et al., Engineering an in vitro   of Hybrid  Tissue Constructs with  Tailorable  Mechanical
               air-blood barrier by 3D bioprinting. Sci Rep, 5:7974.  Properties.  Biofabrication,  3:021001. DOI: 10.1088/1758-
           49.  Merceron TK, Burt M, Seol YJ, et al., 2015, A 3D Bioprinted   5082/3/2/021001.
               Complex Structure for Engineering the Muscle-tendon   60.  Shim JH, Kim JY, Park M, et al., 2011, Development of a
               Unit.  Biofabrication,  7:035003. DOI: 10.1088/1758-  Hybrid Scaffold with Synthetic Biomaterials and Hydrogel
               5090/7/3/035003.                                    Using Solid Freeform Fabrication Technology. Biofabrication,
           50.  Miller JS, Stevens KR, Yang MT, et al., 2012, Rapid Casting   3:034102. DOI: 10.1088/1758-5082/3/3/034102.
               of Patterned  Vascular Networks for Perfusable Engineered   61.  Pati F, Jang J, Ha DH, et al., 2014, Printing Three-dimensional
               Three-dimensional  Tissues.  Nat. Mater,  11:768–774. DOI:   Tissue Analogues with Decellularized Extracellular  Matrix
               10.1038/nmat3357.                                   Bioink. Nat Commun, 5:3935. DOI: 10.1038/ncomms4935.
           51.  Wüst S, Godla ME, Müller R, et al., 2014, Tunable Hydrogel   62.  Kang HW, Lee SJ, Ko IK, et al., 2016, A 3D Bioprinting System
               Composite  with  Two-step Processing in  Combination   to Produce  Human-scale  Tissue  Constructs with  Structural
                                                                   Integrity. Nat. Biotechnol, 34:312–319. DOI: 10.1038/nbt.3413.
               with Innovative  Hardware Upgrade for Cell-based  Three-  63.  Skylar-Scott MA, Uzel SG, Nam LL,  et al., 2019,
               dimensional Bioprinting. Acta Biomater, 10:630–640. DOI:   Biomanufacturing  of  Organ-specific  Tissues  with  High
               10.1016/j.actbio.2013.10.016.                       Cellular Density and Embedded Vascular Channels. Sci Adv,
           52.  Skardal  A,  Zhang  J, McCoard  L,  et  al.,  2010,   5:eaaw2459. DOI: 10.1126/sciadv.aaw2459.
               Photocrosslinkable Hyaluronan-Gelatin Hydrogels for Two-  64.  Lee A, Hudson AR, Shiwarski DJ, et al., 2019, 3D Bioprinting
               Step Bioprinting.  Tissue Eng Part  A,  16:2675–2685. DOI:   of Collagen to Rebuild  Components of the Human Heart.
               10.1089/ten.tea.2009.0798.                          Science, 365:482–487. DOI: 10.1126/science.aav9051.
           53.  Blaeser A, Campos DF, Puster U, et al., 2016, Controlling   65.  Luo G, Yu Y, Yuan Y, et al., 2019, Freeform, Reconfigurable
               Shear Stress in 3D Bioprinting is a Key Factor to Balance   Embedded  Printing  of  All-aqueous  3D  Architectures.  Adv
               Printing  Resolution and Stem  Cell  Integrity.  Adv  Healthc   Mater, 31:1904631. DOI: 10.1002/adma.201904631.
               Mater, 5:326–333. DOI: 10.1002/adhm.201500677.  66.  Mirzendehdel  AM, Suresh K, 2016, Support Structure
           54.  Kolesky DB, Truby RL, Gladman AS, et al., 3D Bioprinting   Constrained  Topology  Optimization  for  Additive
               of Vascularized, Heterogeneous Cell-laden Tissue Constructs.   Manufacturing. Comput. Aided Des, 81:1–13. DOI: 10.1016/j.
               Adv Mater., 26:3124–3130. DOI: 10.1002/adma.201305506.  cad.2016.08.006.
           55.  Hinton  TJ, Jallerat  Q, Palchesko RN,  et al.,  2015, Three-  67.  Nichol JW, Koshy ST, Bae H,  et al., 2010, Cell-laden
               dimensional  Printing of Complex Biological  Structures by   Microengineered Gelatin Methacrylate Hydrogels. Biomaterials,
               Freeform Reversible Embedding of Suspended Hydrogels.   31:5536–5544. DOI: 10.1016/j.biomaterials.2010.03.064.
               Sci Adv, 1:e1500758. DOI: 10.1126/sciadv.1500758.  68.  Akash MS, Rehman K, 2015, Recent Progress in Biomedical
           56.  Wu  W, DeConinck  A, Lewis JA, 2011, Omnidirectional   Applications  of  Pluronic  (PF127):  Pharmaceutical
               Printing of 3D Microvascular Networks. Adv Mater, 23:H178.  Perspectives.  J  Control Release,  209:120–138. DOI:
           57.  An J, Teoh JE, Suntornnond R, et al., 2015, Design and 3D   10.1016/j.jconrel.2015.04.032.















                                       International Journal of Bioprinting (2020)–Volume 6, Issue 1        73
   72   73   74   75   76   77   78   79   80   81   82