Page 72 - IJB-6-2
P. 72
Carbon nanomaterials reinforced scaffolds for bone repair
2. Bártolo PJ, Almeida HA, Rezende RA, et al., 2008, 14. Liu F, Vyas C, Poologasundarampillai G, et al., 2018,
Advanced Processes to Fabricate Scaffolds for Tissue Structural Evolution of PCL during Melt Extrusion 3D
Engineering. In: Virtual Prototyping and Bio Manufacturing Printing. Macromol Mater Eng, 303:1700494. DOI: 10.1002/
in Medical Applications. Springer, Berlin, pp. 149–70. DOI: mame.201700494.
10.1007/978-0-387-68831-2_8. 15. Liu F, Vyas C, Poologasundarampillai G, et al., 2018,
3. Feng P, Jia J, Peng S, et al., 2020, Graphene Oxide-driven Process-Driven Microstructure Control in Melt-Extrusion-
Interfacial Coupling in Laser 3D Printed PEEK/PVA Based 3D Printing for Tailorable Mechanical Properties
Scaffolds for Bone Regeneration. Virtual Phys Prototyp, in a Polycaprolactone Filament. Macromol Mater Eng,
2020:1–16. DOI: 10.1080/17452759.2020.1719457. 303:1800173. DOI: 10.1002/mame.201800173.
4. Lee JM, Ng WL, Yeong WY. 2019, Resolution and Shape in 16. Liu F, Wang W, Mirihanage W, et al. 2018, A Plasma-
Bioprinting: Strategizing Towards Complex Tissue and Organ assisted Bioextrusion System for Tissue Engineering.
Printing. Appl Phys Rev, 6:011307. DOI: 10.1063/1.5053909. Cirp Ann Manufact Technol, 67:229–32. DOI: 10.1016/j.
5. Shuai C, Yang W, Peng S, et al., 2018, Physical Stimulations cirp.2018.04.077.
and Their Osteogenesis-Inducing Mechanisms. 2018:1–4. 17. Wang WG, Caetano G, Ambler WS, et al., 2016, Enhancing
DOI: 10.18063/ijb.v4i2.138. the Hydrophilicity and Cell Attachment of 3D Printed PCL/
6. Lai Y, Li Y, Cao H, et al., 2019, Osteogenic Magnesium Graphene Scaffolds for Bone Tissue Engineering. Materials,
Incorporated into PLGA/TCP Porous Scaffold by 3D Printing 9(12):992. DOI: 10.3390/ma9120992.
for Repairing Challenging Bone Defect. Biomaterials, 18. Wibowo A, Vyas C, Cooper G, et al., 2020, 3D Printing of
197:207–19. DOI: 10.1016/j.biomaterials.2019.01.013. Polycaprolactone Polyaniline Electroactive Scaffolds for
7. Paris JL, Lafuente-Gómez N, Cabañas MV, et al., 2019, Bone Tissue Engineering. Materials, 13:512. DOI: 10.3390/
Fabrication of a Nanoparticle-containing 3D Porous Bone ma13030512.
Scaffold with Proangiogenic and Antibacterial Properties. 19. Wang W, Junior JR, Nalesso PR, et al., 2019, Engineered 3D
Acta Biomater, 86:441–9. DOI: 10.1016/j.actbio.2019.01.013. Printed poly(ɛ-caprolactone)/Graphene Scaffolds for Bone
8. Liu D, Nie W, Li D, et al., 2019, 3D Printed PCL/SrHA Tissue Engineering. Mater Sci Eng C, 100:759–70. DOI:
Scaffold for Enhanced Bone Regeneration. Chem Eng J, 10.1016/j.msec.2019.03.047.
362:269–79. DOI: 10.1016/j.cej.2019.01.015. 20. Wang WG, Huang BY, Byun JJ, et al., 2019, Assessment
9. Harun WS, Kamariah MS, Muhamad N, et al., 2018, A of PCL/Carbon Material Scaffolds for Bone Regeneration.
Review of Powder Additive Manufacturing Processes for J Mech Behav Biomed Mater, 93:52–60. DOI: 10.1016/j.
Metallic Biomaterials. Powder Technol, 327:128–51. DOI: jmbbm.2019.01.020.
10.1016/j.powtec.2017.12.058. 21. Cooper DR, D’Anjou B, Ghattamaneni N, et al., 2012,
10. Wu H, Fahy WP, Kim S, et al., 2020, Recent Developments Experimental Review of Graphene. ISRN Condensed Matter
in Polymers/polymer Nanocomposites for Additive Phys, 2012:56. DOI: 10.5402/2012/501686.
Manufacturing. Prog Mater Sci, 111:100638. DOI: 10.1016/j. 22. Wang W, Caetano GF, Chiang WH, et al., 2016,
pmatsci.2020.100638. Morphological, Mechanical and Biological Assessment of
11. An J, Teoh JE, Suntornnond R, et al., 2015, Design and 3D PCL/Pristine Graphene Scaffolds for Bone Regeneration. Int
Printing of Scaffolds and Tissues. Eng Proc, 1:261–8. DOI: J Bioprint, 2:95–104. DOI: 10.18063/ijb.2016.02.009.
10.15302/j-eng-2015061. 23. Caetano GF, Wang W, Chiang WH, et al., 2018, 3D-Printed
12. Domingos M, Chiellini F, Cometa S, et al., 2020, Evaluation Poly(ɛ-caprolactone)/Graphene Scaffolds Activated with P1-
of in vitro Degradation of PCL Scaffolds Fabricated Latex Protein for Bone Regeneration. 3d Print Addit Manuf,
via BioExtrusion. Part 1: Influence of the Degradation 5:127–37. DOI: 10.1089/3dp.2018.0012.correx.
Environment. Virtual Phys Prototyp, 5:65–73. DOI: 24. Huang B, Vyas C, Roberts I, et al., 2019, Fabrication and
10.1080/17452751003769440. Characterisation of 3D Printed MWCNT Composite Porous
13. Domingos M, Chiellini F, Cometa S, et al., 2011, Scaffolds for Bone Regeneration. Mater Sci Eng C, 98:266–
Evaluation of in vitro Degradation of PCL Scaffolds 78. DOI: 10.1016/j.msec.2018.12.100.
Fabricated via BioExtrusion Part 2: Influence of Pore Size 25. Huang B, Vyas C, Byun JJ, et al., 2020, Aligned Multi-
and Geometry. Virtual Phys Prototyp, 6, 157-165. DOI: walled Carbon Nanotubes with Nanohydroxyapatite in a 3D
10.1080/17452751003769440. Printed Polycaprolactone Scaffold Stimulates Osteogenic
68 International Journal of Bioprinting (2020)–Volume 6, Issue 2

