Page 72 - IJB-6-2
P. 72

Carbon nanomaterials reinforced scaffolds for bone repair
           2.   Bártolo  PJ,  Almeida  HA,  Rezende  RA,  et al.,  2008,   14.  Liu  F,  Vyas  C,  Poologasundarampillai  G,  et al.,  2018,
               Advanced  Processes  to  Fabricate  Scaffolds  for  Tissue   Structural  Evolution  of  PCL  during  Melt  Extrusion  3D
               Engineering. In: Virtual Prototyping and Bio Manufacturing   Printing. Macromol Mater Eng, 303:1700494. DOI: 10.1002/
               in Medical Applications. Springer, Berlin, pp. 149–70. DOI:   mame.201700494.
               10.1007/978-0-387-68831-2_8.                    15.  Liu  F,  Vyas  C,  Poologasundarampillai  G,  et al.,  2018,
           3.   Feng P, Jia J, Peng S, et al., 2020, Graphene Oxide-driven   Process-Driven  Microstructure  Control  in  Melt-Extrusion-
               Interfacial  Coupling  in  Laser  3D  Printed  PEEK/PVA   Based  3D  Printing  for  Tailorable  Mechanical  Properties
               Scaffolds  for  Bone  Regeneration.  Virtual  Phys Prototyp,   in  a  Polycaprolactone  Filament.  Macromol Mater Eng,
               2020:1–16. DOI: 10.1080/17452759.2020.1719457.      303:1800173. DOI: 10.1002/mame.201800173.
           4.   Lee JM, Ng WL, Yeong WY. 2019, Resolution and Shape in   16.  Liu  F,  Wang  W,  Mirihanage  W,  et  al.  2018,  A  Plasma-
               Bioprinting: Strategizing Towards Complex Tissue and Organ   assisted  Bioextrusion  System  for  Tissue  Engineering.
               Printing. Appl Phys Rev, 6:011307. DOI: 10.1063/1.5053909.  Cirp  Ann  Manufact  Technol,  67:229–32.  DOI:  10.1016/j.
           5.   Shuai C, Yang W, Peng S, et al., 2018, Physical Stimulations   cirp.2018.04.077.
               and  Their  Osteogenesis-Inducing  Mechanisms.  2018:1–4.   17.  Wang WG, Caetano G, Ambler WS, et al., 2016, Enhancing
               DOI: 10.18063/ijb.v4i2.138.                         the Hydrophilicity and Cell Attachment of 3D Printed PCL/
           6.   Lai  Y,  Li  Y,  Cao  H,  et  al.,  2019,  Osteogenic  Magnesium   Graphene Scaffolds for Bone Tissue Engineering. Materials,
               Incorporated into PLGA/TCP Porous Scaffold by 3D Printing   9(12):992. DOI: 10.3390/ma9120992.
               for  Repairing  Challenging  Bone  Defect.  Biomaterials,   18.  Wibowo A, Vyas C, Cooper G, et al., 2020, 3D Printing of
               197:207–19. DOI: 10.1016/j.biomaterials.2019.01.013.  Polycaprolactone  Polyaniline  Electroactive  Scaffolds  for
           7.   Paris  JL,  Lafuente-Gómez  N,  Cabañas  MV,  et al.,  2019,   Bone Tissue Engineering. Materials, 13:512. DOI: 10.3390/
               Fabrication  of  a  Nanoparticle-containing  3D  Porous  Bone   ma13030512.
               Scaffold  with  Proangiogenic  and  Antibacterial  Properties.   19.  Wang W, Junior JR, Nalesso PR, et al., 2019, Engineered 3D
               Acta Biomater, 86:441–9. DOI: 10.1016/j.actbio.2019.01.013.  Printed  poly(ɛ-caprolactone)/Graphene  Scaffolds  for  Bone
           8.   Liu  D,  Nie  W,  Li  D,  et  al.,  2019,  3D  Printed  PCL/SrHA   Tissue  Engineering.  Mater Sci Eng C,  100:759–70.  DOI:
               Scaffold  for  Enhanced  Bone  Regeneration.  Chem Eng  J,   10.1016/j.msec.2019.03.047.
               362:269–79. DOI: 10.1016/j.cej.2019.01.015.     20.  Wang  WG,  Huang  BY,  Byun  JJ,  et al.,  2019, Assessment
           9.   Harun  WS,  Kamariah  MS,  Muhamad  N,  et al.,  2018,  A   of  PCL/Carbon  Material  Scaffolds  for  Bone  Regeneration.
               Review  of  Powder  Additive  Manufacturing  Processes  for   J  Mech  Behav  Biomed  Mater,  93:52–60.  DOI:  10.1016/j.
               Metallic  Biomaterials.  Powder Technol,  327:128–51.  DOI:   jmbbm.2019.01.020.
               10.1016/j.powtec.2017.12.058.                   21.  Cooper  DR,  D’Anjou  B,  Ghattamaneni  N,  et al.,  2012,
           10.  Wu H, Fahy WP, Kim S, et al., 2020, Recent Developments   Experimental Review of Graphene. ISRN Condensed Matter
               in  Polymers/polymer  Nanocomposites  for  Additive   Phys, 2012:56. DOI: 10.5402/2012/501686.
               Manufacturing. Prog Mater Sci, 111:100638. DOI: 10.1016/j.  22.  Wang  W,  Caetano  GF,  Chiang  WH,  et al.,  2016,
               pmatsci.2020.100638.                                Morphological,  Mechanical  and  Biological  Assessment  of
           11.  An J, Teoh JE, Suntornnond R, et al., 2015, Design and 3D   PCL/Pristine Graphene Scaffolds for Bone Regeneration. Int
               Printing of Scaffolds and Tissues. Eng Proc, 1:261–8. DOI:   J Bioprint, 2:95–104. DOI: 10.18063/ijb.2016.02.009.
               10.15302/j-eng-2015061.                         23.  Caetano GF, Wang W, Chiang WH, et al., 2018, 3D-Printed
           12.  Domingos M, Chiellini F, Cometa S, et al., 2020, Evaluation   Poly(ɛ-caprolactone)/Graphene Scaffolds Activated with P1-
               of  in vitro  Degradation  of  PCL  Scaffolds  Fabricated   Latex Protein for Bone Regeneration. 3d Print Addit Manuf,
               via  BioExtrusion.  Part  1:  Influence  of  the  Degradation   5:127–37. DOI: 10.1089/3dp.2018.0012.correx.
               Environment.  Virtual Phys Prototyp,  5:65–73.  DOI:   24.  Huang  B, Vyas  C,  Roberts  I,  et al.,  2019,  Fabrication  and
               10.1080/17452751003769440.                          Characterisation of 3D Printed MWCNT Composite Porous
           13.  Domingos  M,  Chiellini  F,  Cometa  S,  et  al.,  2011,   Scaffolds for Bone Regeneration. Mater Sci Eng C, 98:266–
               Evaluation  of  in vitro  Degradation  of  PCL  Scaffolds   78. DOI: 10.1016/j.msec.2018.12.100.
               Fabricated via BioExtrusion Part 2: Influence of Pore Size   25.  Huang  B,  Vyas  C,  Byun  JJ,  et  al.,  2020,  Aligned  Multi-
               and  Geometry.  Virtual Phys Prototyp, 6,  157-165.  DOI:   walled Carbon Nanotubes with Nanohydroxyapatite in a 3D
               10.1080/17452751003769440.                          Printed  Polycaprolactone  Scaffold  Stimulates  Osteogenic

           68                          International Journal of Bioprinting (2020)–Volume 6, Issue 2
   67   68   69   70   71   72   73   74   75   76   77