Page 73 - IJB-6-2
P. 73

Hou, et al.
               Differentiation.  Mater  Sci  Eng  C,  108:110374.  DOI:   33.  Ahmed SA, Gogal RM Jr., Walsh JE, 1994, A New Rapid
               10.1016/j.msec.2019.110374.                         and Simple Non-radioactive Assay to Monitor and Determine
           26.  Dreyer DR, Park S, Bielawski CW, et al., 2010, The Chemistry   the  Proliferation  of  Lymphocytes:  An  Alternative  to  [3H]
               of Graphene Oxide. Chem Soc Rev, 39:228–40.         thymidine  Incorporation  Assay.  J  Immunol Methods,
           27.  Sivashankari  PR,  Prabaharan  M,  2020,  Three-dimensional   170:211–24. DOI: 10.1016/0022-1759(94)90396-4.
               Porous Scaffolds based on Agarose/chitosan/graphene Oxide   34.  Ramazani S, Karimi M. 2015, Aligned Poly(ε-caprolactone)/
               Composite  for  Tissue  Engineering.  Int J Biol Macromol,   Graphene   Oxide   and   Reduced   Graphene   Oxide
               146:222–31. DOI: 10.1016/j.ijbiomac.2019.12.219.    Nanocomposite Nanofibers: Morphological, Mechanical and
           28.  Saravanan S, Vimalraj S, Anuradha D, 2018, Chitosan Based   Structural  Properties.  Mater Sci Eng C,  56:325–34.  DOI:
               Thermoresponsive  Hydrogel  Containing  Graphene  Oxide   10.1016/j.msec.2015.06.045.
               for Bone Tissue Repair. Biomed Pharmacother, 107:908–17.   35.  Thomson  RC,  Yaszemski  MJ,  Powers  JM,  et al.,  1996,
               DOI: 10.1016/j.biopha.2018.08.072.                  Fabrication of Biodegradable Polymer Scaffolds to Engineer
           29.  Zhang  J,  Zhu  S,  Song  K,  et al.,  2020,  3D  Reduced   Trabecular Bone. J Biomater Sci Polym Ed, 7:23–38. DOI:
               Graphene Oxide Hybrid Nano-copper Scaffolds with a High   10.1163/156856295x00805.
               Antibacterial  Performance.  Mater Lett,  267:127527.  DOI:   36.  Williams JM, Adewunmi A, Schek RM, et al., 2005, Bone
               10.1016/j.matlet.2020.127527.                       Tissue  Engineering  Using  Polycaprolactone  Scaffolds
           30.  Min  Lj,  Leong  SS,  Miaomiao  Z,  Yee  WY,  2018,  3D   Fabricated  via  Selective  Laser  Sintering.  Biomaterials,
               Bioprinting  Processes: A  Perspective  on  Classification  and   26:4817–27. DOI: 10.1016/j.biomaterials.2004.11.057.
               Terminology. Int J Bioprint, 4:151.             37.  Porter  BD,  Oldham  JB,  He  LS,  et al.,  2000,  Mechanical
           31.  ASTM  International,  2016,  Standard  Test  Method  for   Properties of a Biodegradable Bone Regeneration Scaffold.
               Compressive  Properties  of  Rigid  Cellular  Plastics.  ASTM   J Biomech Eng, 122:286–8. DOI: 10.1115/1.429659.
               International, West Conshohocken, PA.           38.  Lotz  JC,  Gerhart  TN,  Hayes  WC,  1990,  Mechanical
           32.  ASTM  International,  2015,  Standard  Test  Method   Properties  of  Trabecular  Bone  from  the  Proximal  Femur:
               for  Compressive  Properties  of  Rigid  Plastics.  ASTM   A Quantitative CT Study. J Comput Assist Tomogr, 14:107–
               International, West Conshohocken, PA.               14. DOI: 10.1097/00004728-199001000-00020.








































                                       International Journal of Bioprinting (2020)–Volume 6, Issue 2        69
   68   69   70   71   72   73   74   75   76   77   78