Page 73 - IJB-6-2
P. 73
Hou, et al.
Differentiation. Mater Sci Eng C, 108:110374. DOI: 33. Ahmed SA, Gogal RM Jr., Walsh JE, 1994, A New Rapid
10.1016/j.msec.2019.110374. and Simple Non-radioactive Assay to Monitor and Determine
26. Dreyer DR, Park S, Bielawski CW, et al., 2010, The Chemistry the Proliferation of Lymphocytes: An Alternative to [3H]
of Graphene Oxide. Chem Soc Rev, 39:228–40. thymidine Incorporation Assay. J Immunol Methods,
27. Sivashankari PR, Prabaharan M, 2020, Three-dimensional 170:211–24. DOI: 10.1016/0022-1759(94)90396-4.
Porous Scaffolds based on Agarose/chitosan/graphene Oxide 34. Ramazani S, Karimi M. 2015, Aligned Poly(ε-caprolactone)/
Composite for Tissue Engineering. Int J Biol Macromol, Graphene Oxide and Reduced Graphene Oxide
146:222–31. DOI: 10.1016/j.ijbiomac.2019.12.219. Nanocomposite Nanofibers: Morphological, Mechanical and
28. Saravanan S, Vimalraj S, Anuradha D, 2018, Chitosan Based Structural Properties. Mater Sci Eng C, 56:325–34. DOI:
Thermoresponsive Hydrogel Containing Graphene Oxide 10.1016/j.msec.2015.06.045.
for Bone Tissue Repair. Biomed Pharmacother, 107:908–17. 35. Thomson RC, Yaszemski MJ, Powers JM, et al., 1996,
DOI: 10.1016/j.biopha.2018.08.072. Fabrication of Biodegradable Polymer Scaffolds to Engineer
29. Zhang J, Zhu S, Song K, et al., 2020, 3D Reduced Trabecular Bone. J Biomater Sci Polym Ed, 7:23–38. DOI:
Graphene Oxide Hybrid Nano-copper Scaffolds with a High 10.1163/156856295x00805.
Antibacterial Performance. Mater Lett, 267:127527. DOI: 36. Williams JM, Adewunmi A, Schek RM, et al., 2005, Bone
10.1016/j.matlet.2020.127527. Tissue Engineering Using Polycaprolactone Scaffolds
30. Min Lj, Leong SS, Miaomiao Z, Yee WY, 2018, 3D Fabricated via Selective Laser Sintering. Biomaterials,
Bioprinting Processes: A Perspective on Classification and 26:4817–27. DOI: 10.1016/j.biomaterials.2004.11.057.
Terminology. Int J Bioprint, 4:151. 37. Porter BD, Oldham JB, He LS, et al., 2000, Mechanical
31. ASTM International, 2016, Standard Test Method for Properties of a Biodegradable Bone Regeneration Scaffold.
Compressive Properties of Rigid Cellular Plastics. ASTM J Biomech Eng, 122:286–8. DOI: 10.1115/1.429659.
International, West Conshohocken, PA. 38. Lotz JC, Gerhart TN, Hayes WC, 1990, Mechanical
32. ASTM International, 2015, Standard Test Method Properties of Trabecular Bone from the Proximal Femur:
for Compressive Properties of Rigid Plastics. ASTM A Quantitative CT Study. J Comput Assist Tomogr, 14:107–
International, West Conshohocken, PA. 14. DOI: 10.1097/00004728-199001000-00020.
International Journal of Bioprinting (2020)–Volume 6, Issue 2 69

