Page 62 - IJB-6-3
P. 62
Software for bioprinting
Glass Scaffolds with a Controllable Pore Architecture, 52. Lehner BA, Schmieden DT, Meyer AS., 2017, A
Excellent Mechanical Strength and Mineralization Straightforward Approach for 3D Bacterial Printing. ACS
Ability. Acta Biomater, 7:2644–50. DOI: 10.1016/j. Synth Biol, 6:1124–30. DOI: 10.1021/acssynbio.6b00395.
actbio.2011.03.009. 53. Jeon O, Leea YB, Hinton TJ, et al., 2019, Cryopreserved Cell-
39. Gratson GM, Xu M, Lewis JA, 2004, Microperiodic laden Alginate Microgel Bioink for 3D Bioprinting of Living
Structures: Direct Writing of Threedimensional Webs. Tissues. Mater Today Chem, 12:61–70. DOI: 10.1016/j.
Nature, 428:386. DOI: 10.1038/428386a. mtchem.2018.11.009.
40. Bian WG, Lei P, Liang FH, et al., 2007, Morphogenetic 54. Markstedt K, Håkanssonabd K, Toriz G, et al., 2019,
Protein-2 and Gel Complex on Hydroxyapatite-coated Porous Materials from Trees Assembled by 3D Printing Wood Tissue
Titanium to Repair Defects of Distalfemur in Rabbits. Chin J Beyond Nature Limits. Appl Mater Today, 15:280–5. DOI:
Orthop Trauma, 9:550–4. 10.1016/j.apmt.2019.02.005.
41. Pati F, Jang J, Ha DH, et al., 2014, Printing Three-dimensional 55. Faramarzi N, Yazdi IK, Nabavinia M, et al., 2018, Patient-
Tissue Analogues with Decellularized Extracellular Matrix specific Bioinks for 3D Bioprinting of Tissue Engineering
Bioink. Nat Commun, 5:3935. DOI: 10.1038/ncomms4935. Scaffolds. Adv Healthc Mater, 7:1701347. DOI: 10.1002/
42. Gulyas M, Csiszer M, Mehes E, et al., 2018, Software Tools adhm.201701347.
for Cell Culture-related 3D Printed Structures. PLoS One, 56. Boyer CJ, Ballard DH, Yun JW, et al., 2018, Three-
13:e0203203. DOI: 10.1371/journal.pone.0203203. dimensional Printing of Cell Exclusion Spacers (CES) for
43. Chua CK, Wai YY, 2014, Bioprinting: Principles and Use in Motility Assays. Pharm Res, 35:155. DOI: 10.1007/
Applications. Vol. 1. World Scientific Publishing Co., Inc., s11095-018-2431-4.
New Jersey. 57. Boyer CJ, Ballard DH, Barzegar M, et al., 2018, High-
44. Available from: https://www.regenhu.com/3d-bioprinters/ throughput Scaffold-free Microtissues through 3D Printing.
software. [Last accessed on 2020 Feb 17]. 3D Print Med, 4:1–6. DOI: 10.1186/s41205-018-0029-4.
45. Available from: https://www.cellink.com/software. [Last 58. Ivanov DP, Grabowska AM, 2018, In Vitro Tissue Microarrays
accessed on 2020 Feb 17]. for Quick and Efficient Spheroid Characterization. SLAS
46. Available from: https://www.3dnatives.com/en/allevi-software- Discov, 23:211–7.
bioprinting-050920195. [Last accessed on 2020 Feb 17]. 59. Yang F, Tadepalli V, Wiley BJ, 2017, 3D Printing of a Double
47. Naing MW, Chua CK, Leong KF, et al., 2005, Fabrication Network Hydrogel with a Compression Strength and Elastic
of Customised Scaffolds Using Computer-aided Design and Modulus Greater than those of Cartilage. ACS Biomater Sci
Rapid Prototyping Techniques. Rapid Prototyp J, 11:249–59. Eng, 3:863–9. DOI: 10.1021/acsbiomaterials.7b00094.
DOI: 10.1108/13552540510612938. 60. Ferraz MA, Henning HH, Costa PF, et al., 2017, Improved
48. Sudarmadji N, Chua CK, Leong KF, 2012, The Development Bovine Embryo Production in an Oviduct-on-a-Chip System:
of Computer-Aided System for Tissue Scaffolds (CASTS) Prevention of Poly-spermic Fertilization and Parthenogenic
System for Functionally Graded Tissue-Engineering Activation. Lab Chip, 17:905–16. DOI: 10.1039/c6lc01566b.
Scaffolds. In: Computer-Aided Tissue Engineering. Springer, 61. Knowlton S, Yu CH, Ersoy F, et al., 2016, 3D-printed
Berlin. pp. 111–123. DOI: 10.1007/978-1-61779-764-4_7. Microfluidic Chips with Patterned, Cell-laden Hydrogel
49. Sil BC, Patel A, Crowther JM, et al., 2019, A Preliminary Constructs. Biofabrication, 8:025019. DOI: 10.1088/1758-
Investigation of Additive Manufacture to Fabricate Human Nail 5090/8/2/025019.
Plate Surrogates for Pharmaceutical Testing. Pharmaceutics, 62. Adamkiewicz M, Rubinsky B., 2015, Cryogenic 3D Printing
11:250. DOI: 10.3390/pharmaceutics11060250. for Tissue Engineering. Cryobiology, 71:518–21. DOI:
50. Van der Valk DC, van der Ven CF, Blaser MC, et al., 2018, 10.1016/j.cryobiol.2015.10.152.
Engineering a 3D-Bioprinted Model of Human Heart Valve 63. Cristovão AF, Sousa D, Silvestre F, et al., 2019, Customized
Disease Using Nanoindentation-based Biomechanics. Tracheal Design Using 3D Printing of a Polymer Hydrogel:
Nanomaterials, 8:296. DOI: 10.3390/nano8050296. Influence of UV Laser Cross-linking on Mechanical
51. Jeon O, Lee YB, Jeong H, et al., 2019, Living Cell-only Properties. 3D Print Med, 5:12. DOI: 10.1186/s41205-019-
Bioink and Photocurable Supporting Medium for Printing and 0049-8.
Generation of Engineered Tissues with Complex Geometries. 64. Mussi E, Furferi R, Volpe Y, et al., 2019, Ear Reconstruction
bioRxiv, 1:611525. DOI: 10.1101/611525. Simulation: From Handcrafting to 3D Printing.
58 International Journal of Bioprinting (2020)–Volume 6, Issue 3

