Page 62 - IJB-6-3
P. 62

Software for bioprinting
               Glass  Scaffolds  with  a  Controllable  Pore  Architecture,   52.  Lehner  BA,  Schmieden  DT,  Meyer  AS.,  2017,  A
               Excellent  Mechanical  Strength  and  Mineralization  Straightforward  Approach for 3D Bacterial  Printing.  ACS
               Ability.  Acta  Biomater,  7:2644–50.  DOI:  10.1016/j.  Synth Biol, 6:1124–30. DOI: 10.1021/acssynbio.6b00395.
               actbio.2011.03.009.                             53.  Jeon O, Leea YB, Hinton TJ, et al., 2019, Cryopreserved Cell-
           39.  Gratson  GM,  Xu  M,  Lewis  JA,  2004,  Microperiodic   laden Alginate Microgel Bioink for 3D Bioprinting of Living
               Structures:  Direct  Writing  of Threedimensional  Webs.   Tissues.  Mater Today Chem,  12:61–70.  DOI:  10.1016/j.
               Nature, 428:386. DOI: 10.1038/428386a.              mtchem.2018.11.009.
           40.  Bian  WG,  Lei  P,  Liang  FH,  et al.,  2007,  Morphogenetic   54.  Markstedt  K,  Håkanssonabd  K,  Toriz  G,  et  al.,  2019,
               Protein-2 and Gel Complex on Hydroxyapatite-coated Porous   Materials from Trees Assembled by 3D Printing Wood Tissue
               Titanium to Repair Defects of Distalfemur in Rabbits. Chin J   Beyond Nature Limits. Appl Mater Today, 15:280–5. DOI:
               Orthop Trauma, 9:550–4.                             10.1016/j.apmt.2019.02.005.
           41.  Pati F, Jang J, Ha DH, et al., 2014, Printing Three-dimensional   55.  Faramarzi N, Yazdi IK, Nabavinia M, et al., 2018, Patient-
               Tissue Analogues with Decellularized Extracellular  Matrix   specific  Bioinks  for  3D  Bioprinting  of  Tissue  Engineering
               Bioink. Nat Commun, 5:3935. DOI: 10.1038/ncomms4935.  Scaffolds.  Adv Healthc  Mater,  7:1701347.  DOI:  10.1002/
           42.  Gulyas M, Csiszer M, Mehes E, et al., 2018, Software Tools   adhm.201701347.
               for Cell Culture-related  3D Printed Structures.  PLoS One,   56.  Boyer  CJ,  Ballard  DH,  Yun  JW,  et al.,  2018, Three-
               13:e0203203. DOI: 10.1371/journal.pone.0203203.     dimensional  Printing  of  Cell  Exclusion  Spacers  (CES)  for
           43.  Chua CK,  Wai  YY, 2014, Bioprinting: Principles and   Use in Motility Assays. Pharm Res, 35:155. DOI: 10.1007/
               Applications. Vol. 1. World Scientific Publishing Co., Inc.,   s11095-018-2431-4.
               New Jersey.                                     57.  Boyer  CJ,  Ballard  DH,  Barzegar  M,  et al.,  2018,  High-
           44.  Available  from:  https://www.regenhu.com/3d-bioprinters/  throughput Scaffold-free Microtissues through 3D Printing.
               software. [Last accessed on 2020 Feb 17].           3D Print Med, 4:1–6. DOI: 10.1186/s41205-018-0029-4.
           45.  Available  from:  https://www.cellink.com/software.  [Last   58.  Ivanov DP, Grabowska AM, 2018, In Vitro Tissue Microarrays
               accessed on 2020 Feb 17].                           for  Quick  and  Efficient  Spheroid  Characterization.  SLAS
           46.  Available from: https://www.3dnatives.com/en/allevi-software-  Discov, 23:211–7.
               bioprinting-050920195. [Last accessed on 2020 Feb 17].  59.  Yang F, Tadepalli V, Wiley BJ, 2017, 3D Printing of a Double
           47.  Naing MW, Chua CK, Leong KF, et al., 2005, Fabrication   Network Hydrogel with a Compression Strength and Elastic
               of Customised Scaffolds Using Computer-aided Design and   Modulus Greater than those of Cartilage. ACS Biomater Sci
               Rapid Prototyping Techniques. Rapid Prototyp J, 11:249–59.   Eng, 3:863–9. DOI: 10.1021/acsbiomaterials.7b00094.
               DOI: 10.1108/13552540510612938.                 60.  Ferraz MA, Henning HH, Costa PF, et al., 2017, Improved
           48.  Sudarmadji N, Chua CK, Leong KF, 2012, The Development   Bovine Embryo Production in an Oviduct-on-a-Chip System:
               of  Computer-Aided  System  for  Tissue  Scaffolds  (CASTS)   Prevention of Poly-spermic Fertilization and Parthenogenic
               System  for  Functionally  Graded  Tissue-Engineering   Activation. Lab Chip, 17:905–16. DOI: 10.1039/c6lc01566b.
               Scaffolds. In: Computer-Aided Tissue Engineering. Springer,   61.  Knowlton  S,  Yu  CH,  Ersoy  F,  et al., 2016, 3D-printed
               Berlin. pp. 111–123. DOI: 10.1007/978-1-61779-764-4_7.  Microfluidic  Chips  with  Patterned,  Cell-laden  Hydrogel
           49.  Sil BC, Patel A, Crowther JM, et al., 2019, A Preliminary   Constructs.  Biofabrication,  8:025019.  DOI:  10.1088/1758-
               Investigation of Additive Manufacture to Fabricate Human Nail   5090/8/2/025019.
               Plate Surrogates for Pharmaceutical Testing. Pharmaceutics,   62.  Adamkiewicz M, Rubinsky B., 2015, Cryogenic 3D Printing
               11:250. DOI: 10.3390/pharmaceutics11060250.         for  Tissue  Engineering.  Cryobiology,  71:518–21.  DOI:
           50.  Van der Valk DC, van der Ven CF, Blaser MC, et al., 2018,   10.1016/j.cryobiol.2015.10.152.
               Engineering a 3D-Bioprinted Model of Human Heart Valve   63.  Cristovão AF, Sousa D, Silvestre F, et al., 2019, Customized
               Disease Using Nanoindentation-based  Biomechanics.   Tracheal Design Using 3D Printing of a Polymer Hydrogel:
               Nanomaterials, 8:296. DOI: 10.3390/nano8050296.     Influence  of  UV  Laser  Cross-linking  on  Mechanical
           51.  Jeon  O,  Lee  YB,  Jeong  H,  et  al.,  2019,  Living  Cell-only   Properties. 3D Print Med, 5:12. DOI: 10.1186/s41205-019-
               Bioink and Photocurable Supporting Medium for Printing and   0049-8.
               Generation of Engineered Tissues with Complex Geometries.   64.  Mussi E, Furferi R, Volpe Y, et al., 2019, Ear Reconstruction
               bioRxiv, 1:611525. DOI: 10.1101/611525.             Simulation:   From   Handcrafting   to   3D   Printing.

           58                          International Journal of Bioprinting (2020)–Volume 6, Issue 3
   57   58   59   60   61   62   63   64   65   66   67