Page 64 - IJB-6-3
P. 64
Software for bioprinting
3D Bioprinting for Reconstructive Surgery: Principles, 106. Li H, Li K, Kim T, et al., 2012, Spatial Modeling of Bone
Applications and Challenges. J Plas Reconstr Aesthetic Surg, Microarchitecture. Proc SPIE, 8290:23.
70:1155–70. DOI: 10.1016/j.bjps.2017.06.001. 107. Available from: https://www.grasshopper3d.com. [Last
92. Dávila JL, Freitas MS, Neto P, 2015, Software to Generate accessed on 2020 Feb 05].
3D Continuous Printing Paths for the Fabrication of Tissue 108. Available from: https://www.autodesk.com. [Last accessed
Engineering Scaffolds. Int J Adv Manuf Technol, 84:1671–7. on 2020 Feb 05].
DOI: 10.1007/s00170-015-7866-8. 109. Robu A, Robu N, Neagu A, 2018, New Software Tools for
93. Malone E, Lipson H, 2007, Fab@ Home: The Personal Hydrogel-based Bioprinting. 2018 IEEE 12 International
th
Desktop Fabricator Kit. Rapid Prototyp J, 13:245–55. DOI: Symposium on Applied Computational Intelligence and
10.1108/13552540710776197. Informatics (SACI). IEEE, Piscataway, New Jersey. DOI:
94. Fryazinov O, Vilbrandt T, Pasko A, 2013, Multi-scale Space- 10.1109/saci.2018.8440971.
variant FRep Cellular Structures. Comput Aided Des, 45:26– 110. Robu A, Stoicu-Tivadar L, 2016, SIMMMC an Informatics
34. DOI: 10.1016/j.cad.2011.09.007. Application for Modeling and Simulating the Evolution of
95. Available from: http://www.hyperfun.org. [Last accessed on Multicellular Systems in the Vicinity of Biomaterials. Rom J
2020 Feb 03]. Biophys, 26:145–62.
96. Available from: http://www.uformia.com. [Last accessed on 111. Neagu A, 2017, Role of Computer Simulation to Predict the
2020 Feb 03]. Outcome of 3D Bioprinting. J 3D Print Med, 1:103–21.
97. Popov D, Sajfert V, Pop N, et al., 2020, Efficient Contouring of 112. Glazier JA, Balter A, Popławski NJ, Anderson AR, Chaplain
Functionally Represented Objects for Additive Manufacturing. MA, Rejniak KA, 2007, Magnetization to Morphogenesis:
Comput Aided Des. Available from: http: //github.com/ A Brief History of the Glazier Graner Hogeweg Model. In:
Torrero/FRepCAM. [Last accessed on 2020 Jun 02]. Anderson AR, Chaplain MA, Rejniak KA, editors. Single-
98. Zhang XY, Yan XC, Fang G, et al., 2020, Biomechanical Cell-Based Models in Biology and Medicine, Birkhäuser,
Influence of Structural Variation Strategies on Functionally Basel, Switzerland, pp. 79–106. DOI: 10.1007/978-3-7643-
Graded Scaffolds Constructed with Triply Periodic 8123-3_4.
Minimal Surface. Addit Manuf, 32:101015. DOI: 10.1016/j. 113. Izaguirre JA, Chaturvedi R, Huang C, et al., 2004, CompuCell,
addma.2019.101015. a Multi-model Framework for Simulation of Morphogenesis.
99. Tikhonov AA, Evdokimov PV, Putlyaev VI, et al., 2019, On Bioinformatics, 20:1129–37.
the Choice of the Architecture of Osteoconductive Bioceramic 114. Swat MH, Hester SD, Balter AI, et al., 2009, Multicell
Implants. Inorg Mater, 10:242–7. Simulations of Development and Disease Using the
100. Kapfer SC, Hyde ST, Mecke K, et al., 2011, Minimal Surface CompuCell3D Simulation Environment. In: Maly IV, editor.
Scaffold Designs for Tissue Engineering. Biomaterials, Systems Biology. Humana Press, New York, USA, pp. 361–
32:6875–82. DOI: 10.1016/j.biomaterials.2011.06.012. 428. DOI: 10.1007/978-1-59745-525-1_13.
101. Schwarz HA, 1972, Gesammelte Mathematische 115. Hoehme S, Drasdo D, 2010, A Cell-based Simulation Software
Abhandlungen. Vol. 260. American Mathematical Society, for Multi-cellular Systems. Bioinformatics, 26:2641–2. DOI:
Providence, Rhode Island. 10.1093/bioinformatics/btq437.
102. Schoen AH, 1970, Infinite Periodic Minimal Surfaces 116. Brakke KA, 1992, The Surface Evolver. Exp Math, 1:141–65.
without Self-intersections. National Aeronautics and Space 117. Rezende R. A., V. Mironov, and J. V. L. da Silva. 2016,
Administration, Washington, DC. Bioprinting Tissues and Organs. In: Reference Module
103. Karcher H, 1989, The Triply Periodic Minimal Surfaces of in Materials Science and Materials Engineering. Elsevier
Alan Schoen and their Constant Mean Curvature Companions. Amsterdam, Netherlands, pp. 1–14. DOI: 10.1016/b978-0-
Manuscr Math, 64:291–357. DOI: 10.1007/bf01165824. 12-803581-8.04139-4.
104. Dinis JC, Moraes TF, Amorim HJ, et al., 2016, POMES: An 118. Rezende RA, Vladimir K, Vladimir M, Lopes Da JV, 2015,
Open-source Software Tool to Generate Porous/Roughness Organ Printing as an Information Technology. Proc Eng,
on Surface. Proced CIRP, 49:178–82. DOI: 10.1016/j. 110:151–8.
procir.2015.07.085. 119. Rezende R, Laureti CA, da Silva JV, et al., 2011, Towards
105. Available from: https://www.ntopology.com. [Last accessed Simulation of a Bioreactor Environment for Biofabricated
on 2020 Feb 05]. Tissue Maturation. In: Bártolo PJ, editor. Innovative
60 International Journal of Bioprinting (2020)–Volume 6, Issue 3

