Page 63 - IJB-6-3
P. 63

Pakhomova, et al.
               Bioengineering, 6:14. DOI: 10.3390/bioengineering6010014.  Support.  International  Symposium  on  Visual  Computing.
           65.  Germain  L,  Fuentesc  CA,  van  Vuure  AW,  et  al.,  2018,   Springer, Cham.
               3D-printed  Biodegradable  Gyroid  Scaffolds  for  Tissue   78.  Available  from:  https://www.slicer.org.  [Last  accessed  on
               Engineering  Applications.  Mater Des,  151:113–22.  DOI:   2020 Feb 16].
               10.1016/j.matdes.2018.04.037.                   79.  Dernowsek  A,  Janaina  D,  Alvarenga  RR,  et al.,  2017,
           66.  Gu  Q,  Tomaskovic-Crook  E,  Lozano  R,  et  al.,  2016,   The  Role of Information  Technology in the  Future of 3D
               Functional 3D Neural Mini-tissues from Printed Gel-based   Biofabrication. J 3D Print Med, 1:63–74.
               Bioink and Human Neural Stem Cells. Adv Healthc Mater,   80.  Rodrigo AR, Vladimir K, Vladimir M, et al., 2015, Organ
               5:1429–38. DOI: 10.1002/adhm.201670060.             Printing as an Information Technology. Proc Eng, 110:151–8.
           67.  Grigoryan  B,  Paulsen  SJ,  Corbett  DC,  et  al.,  2019,   81.  Rezende  RA,  Mironov  V,  da  Silva  JV,  2016,  Bioprinting
               Multivascular  Networks  and  Functional  Intravascular   Tissues and  Organs. In:  Reference  Module  in Materials
                                                                                              st
               Topologies  within  Biocompatible  Hydrogels.  Science,   Science and Materials Engineering. 1  ed., Vol. 1. Elsevier,
               364:458–64.                                         Amsterdam,  Netherlands,  pp.  1-14.  DOI:  10.1016/b978-0-
           68.  Costa  PF, Albers  HJ,  Linssen  JE,  et  al.,  2017,  Mimicking   12-803581-8.04139-4.
               Arterial  Thrombosis  in  a  3D-printed  Microfluidic  In   82.  Available from: https://www.simplify3d.com. [Last accessed
               Vitro  Vascular  Model  Based  on  Computed  Tomography   on 2020 Feb 15].
               Angiography Data.  Lab  Chip,  17:2785–92.  DOI:  10.1039/  83.  Sahai  N,  Gogoi  M,  2020,  3D  Tissue  Scaffold  Library
               c7lc00202e.                                         Development  form Medical  Images for Bioprinting
           69.  Liberski AR, 2016, Three-dimensional Printing of Alginate:   Application.   Mater   Today   Proc.   DOI:   10.1016/j.
               From Seaweeds to Heart Valve Scaffolds. QSci Connect, 2:3.   matpr.2019.12.063.
               DOI: 10.5339/connect.2016.3.                    84.  Jardini  AL, Larosa MA,  Filho RM,  et al., 2014, Cranial
           70.  Miller JS, Stevens KR, Yang MT, et al., 2012, Rapid Casting   Reconstruction:  3D Biomodel  and Custom-built  Implant
               of  Patterned  Vascular  Networks  for  Perfusable  Engineered   Created Using Additive Manufacturing. J Craniomaxillofac
               Three-dimensional  Tissues.  Nat Mater,  11:768–74.  DOI:   Surg, 42:1877–84. DOI: 10.1016/j.jcms.2014.07.006.
               10.1038/nmat3357.                               85.  Naghieh S, Sarker MD, Abelseth E, et al., 2019, Indirect 3D
           71.  Tomov  ML,  Cetnar  A,  Do  K,  2019,  Patient-Specific   Bioprinting  and Characterization  of Alginate  Scaffolds for
               3-Dimensional-Bioprinted Model for  In Vitro Analysis  and   Potential  Nerve  Tissue Engineering  Applications.  J Mech
               Treatment Planning of Pulmonary Artery Atresia in Tetralogy   Behav Biomed Mater,  93:183–93.  DOI:  10.31224/osf.io/
               of Fallot and Major Aortopulmonary Collateral Arteries.  J   pyq29.
               Am Heart Assoc, 8:e014490. DOI: 10.1161/jaha.119.014490.  86.  Available   from:   https://www.ultimaker.com/software/
           72.  McCracken  JM,  Rauzan  BM,  Kjellman  JC,  et  al.,  2019,   ultimaker-cura. [Last accessed on 2020 Feb 15].
               Ionic  Hydrogels  with  Biomimetic  4D-Printed  Mechanical   87.  Available   from:   https://www.github.com/ultimaker/
               Gradients: Models for Soft-Bodied Aquatic Organisms. Adv   curaengine. [Last accessed on 2020 Feb 15].
               Funct Mater, 29:1806723. DOI: 10.1002/adfm.201806723.  88.  Ariffin  MK,  Sukindar  NA,  Baharudin  HT,  et  al.,  2018,
           73.  Ammar J, 2019, Defective Computer-Aided Design Software   Slicer Method Comparison Using  Open-source 3D  Printer.
               Liability in 3d Bioprinted Human Organ Equivalents. Santa   IOP Conference  Series:  Earth  and Environmental  Science.
               Clara High Tech Law J. 35:37–67. Available from: https://  Vol.  114.  IOP  Publishing,  Bristol,  United  Kingdom.  DOI:
               www.digitalcommons.law.scu.edu/chtlj/vol35/iss3/2.  [Last   10.1088/1755-1315/114/1/012018.
               accessed on 2020 Feb 16].                       89.  Mielczarek  J,  Gazdowicz  G,  Kramarz  J,  et al.,  2015, A
           74.  Available  from:  https://www.materialise.com/en/medical/  Prototype of a 3D Bioprinter. Solid State Phenomena. Vol.
               mimics-innovation-suite. [Last accessed on 2020 Feb 16].  237.  Trans  Tech  Publications  Ltd.  DOI:  10.4028/www.
           75.  Available   from:   https://www.solidworks.com/partner-  scientific.net/ssp.237.221.
               product/biocad. [Last accessed on 2020 Feb 16].  90.  Datta  S,  Sarkar  R,  Vyas  V,  et al.,  2018, Alginate-honey
           76.  Available  from:  https://www.cti.gov.br/en/invesalius.  [Last   Bioinks  with  Improved  Cell  Responses for  Applications
               accessed on 2020 Feb 16].                           as Bioprinted  Tissue Engineered  Constructs.  J  Mater  Res,
           77.  Amorim P, de Moraes TF, Pedrini H, et al., 2015, In Vesalius:   33:2029–39. DOI: 10.1557/jmr.2018.202.
               An  Interactive  Rendering  Framework  for  Health  Care   91.  Jessop  ZM,  Al-Sabah  A,  Gardiner  MD,  et al.,  2017,

                                       International Journal of Bioprinting (2020)–Volume 6, Issue 3        59
   58   59   60   61   62   63   64   65   66   67   68