Page 176 - IJB-10-6
P. 176
International Journal of Bioprinting 3D bioprinting technology for brain tumor
26. Cadena M, Ning L, King A, et al. 3D bioprinting of neural 38. Sánchez-Salazar MG, Álvarez MM, Trujillo-de Santiago G.
tissues. Adv Healthc Mater. 2021;10(15):e2001600. Advances in 3D bioprinting for the biofabrication of tumor
doi: 10.1002/adhm.202001600 models. Bioprinting. 2021;21:e00120.
doi: 10.1016/j.bprint.2020.e00120
27. Khoeini R, Nosrati H, Akbarzadeh A, et al. Natural and
synthetic bioinks for 3D bioprinting. Adv NanoBiomed Res. 39. Wang X, Li X, Ding J, et al. 3D bioprinted glioma
2021;1(8):2000097. microenvironment for glioma vascularization. J Biomed
doi: 10.1002/anbr.202000097 Mater Res A. 2021;109(6):915-925.
doi: 10.1002/jbm.a.37082
28. Leong SW, Tan SC, Norhayati MN, Monif M, Lee S-Y.
Effectiveness of bioinks and the clinical value of 3d 40. Graber P, Dolman MEM, Jung M, Kavallaris M. Ex vivo
bioprinted glioblastoma models: a systematic review. modeling of the tumor microenvironment to develop
Cancers. 2022;14(9):2149. therapeutic strategies for gliomas. Adv Ther. 2024:2300442.
doi: 10.3390/cancers14092149 doi: 10.1002/adtp.202300442
29. Tang M, Rich JN, Chen S. Biomaterials and 3D bioprinting 41. Wang X, Li X, Dai X, et al. Coaxial extrusion bioprinted shell-
strategies to model glioblastoma and the blood-brain barrier. core hydrogel microfibers mimic glioma microenvironment
Adv Mater. 2021;33(5):2004776. and enhance the drug resistance of cancer cells. Colloids Surf
doi: 10.1002/adma.202004776v B Biointerfaces. 2018;171:291-299.
doi: 10.1016/j.colsurfb.2018.07.042
30. Ma L, Li Y, Wu Y, et al. 3D bioprinted hyaluronic acid-based
cell-laden scaffold for brain microenvironment simulation. 42. Suresh P. Saponins-uptake and targeting issues for brain-
Bio-Design Manuf. 2020;3:164-174. specific delivery for enhanced cell death induction
doi: 10.1007/s42242-020-00076-6 in glioblastoma. Lett Drug Des Discov. 2022;19(6):
473-480.
31. de la Vega L, Lee C, Sharma R, Amereh M, Willerth SM. 3D
bioprinting models of neural tissues: the current state of the doi: 10.2174/1570180819666220121145332
field and future directions. Brain Res Bull. 2019;150:240-249. 43. Dai X, Ma C, Lan Q, Xu T. 3D bioprinted glioma stem cells for
doi: 10.1016/j.brainresbull.2019.06.007 brain tumor model and applications of drug susceptibility.
Biofabrication. 2016;8(4):045005.
32. Kumar SL, Sureka P, Sowmitha A, Sentisenla J, Swathy M.
Recent advancements of hydroxyapatite and polyethylene doi: 10.1088/1758-5090/8/4/045005
glycol (PEG) composites for tissue engineering 44. Ahmed T. Biomaterial-based in vitro 3D modeling
applications—a comprehensive review. Eur Polym J. of glioblastoma multiforme. Cancer Pathog Ther.
2024;215(9):113226. 2023;1(3):177-194.
doi: 10.1016/j.eurpolymj.2024.113226 doi: 10.1016/j.cpt.2023.01.002
33. Shi L, Zhang J, Zhao M, et al. Effects of polyethylene glycol 45. Han S, Kim S, Chen Z, et al. 3D bioprinted vascularized
on the surface of nanoparticles for targeted drug delivery. tumour for drug testing. Int J Mol Sci. 2020;21(8):2993.
Nanoscale. 2021;13(24):10748-10764. doi: 10.3390/ijms21082993
doi: 10.1039/D1NR02065J
46. Kim EH, Song HS, Yoo SH, Yoon M. Tumor treating
34. Walus K, Beyer S, Willerth SM. Three-dimensional fields inhibit glioblastoma cell migration, invasion and
bioprinting healthy and diseased models of the brain tissue angiogenesis. Oncotarget. 2016;7(40):65125-65136.
using stem cells. Curr Opin Biomed Eng. 2020;14:25-33. doi: 10.18632/oncotarget.11372
doi: 10.1016/j.cobme.2020.03.002
47. Tricinci O, De Pasquale D, Marino A, Battaglini M, Pucci
35. Lee SJ, Esworthy T, Stake S, et al. Advances in 3D bioprinting C, Ciofani G. A 3D biohybrid real‐scale model of the brain
for neural tissue engineering. Adv Biosyst. 2018;2(4): cancer microenvironment for advanced in vitro testing. Adv
1700213. Mater Technol. 2020;5(10):2000540.
doi: 10.1002/adbi.201700213 doi: 10.1002/admt.202000540
36. Esworthy TJ, Miao S, Lee S-J, et al. Advanced 4D-bioprinting 48. Bakirci E, Schaefer N, Dahri O, et al. Melt electrowritten in
technologies for brain tissue modeling and study. Int J Smart vitro radial device to study cell growth and migration. Adv
Nano Mater. 2019;10(3):177-204. Biosyst. 2020;4(10):2000077.
doi: 10.1080/19475411.2019.1631899 doi: 10.1002/adbi.202000077
37. Wang X, Dai X, Zhang X, et al. 3D bioprinted glioma 49. Huang W, Ding X, Ye H, Wang J, Shao J, Huang T. Hypoxia
cell‐laden scaffolds enriching glioma stem cells via enhances the migration and invasion of human glioblastoma
epithelial–mesenchymal transition. J Biomed Mater Res A. U87 cells through PI3K/Akt/mTOR/HIF-1α pathway.
2019;107(2):383-391. Neuroreport. 2018;29(18):1578-1585.
doi: 10.1002/jbm.a.36549 doi: 10.1097/WNR.0000000000001156
Volume 10 Issue 6 (2024) 168 doi: 10.36922/ijb.4166

