Page 176 - IJB-10-6
P. 176

International Journal of Bioprinting                                3D bioprinting technology for brain tumor




            26.  Cadena M, Ning L, King A, et al. 3D bioprinting of neural   38.  Sánchez-Salazar MG, Álvarez MM, Trujillo-de Santiago G.
               tissues. Adv Healthc Mater. 2021;10(15):e2001600.  Advances in 3D bioprinting for the biofabrication of tumor
               doi: 10.1002/adhm.202001600                        models. Bioprinting. 2021;21:e00120.
                                                                  doi: 10.1016/j.bprint.2020.e00120
            27.  Khoeini R, Nosrati H, Akbarzadeh A, et al. Natural and
               synthetic bioinks for 3D bioprinting. Adv NanoBiomed Res.   39.  Wang X, Li X, Ding J, et al. 3D bioprinted glioma
               2021;1(8):2000097.                                 microenvironment for glioma vascularization.  J Biomed
               doi: 10.1002/anbr.202000097                        Mater Res A. 2021;109(6):915-925.
                                                                  doi: 10.1002/jbm.a.37082
            28.  Leong  SW,  Tan  SC,  Norhayati  MN,  Monif  M,  Lee  S-Y.
               Effectiveness of bioinks and the clinical value of 3d   40.  Graber P, Dolman MEM, Jung M, Kavallaris M. Ex vivo
               bioprinted glioblastoma models: a systematic review.   modeling of the tumor microenvironment to develop
               Cancers. 2022;14(9):2149.                          therapeutic strategies for gliomas. Adv Ther. 2024:2300442.
               doi: 10.3390/cancers14092149                       doi: 10.1002/adtp.202300442
            29.  Tang M, Rich JN, Chen S. Biomaterials and 3D bioprinting   41.  Wang X, Li X, Dai X, et al. Coaxial extrusion bioprinted shell-
               strategies to model glioblastoma and the blood-brain barrier.   core hydrogel microfibers mimic glioma microenvironment
               Adv Mater. 2021;33(5):2004776.                     and enhance the drug resistance of cancer cells. Colloids Surf
               doi: 10.1002/adma.202004776v                       B Biointerfaces. 2018;171:291-299.
                                                                  doi: 10.1016/j.colsurfb.2018.07.042
            30.  Ma L, Li Y, Wu Y, et al. 3D bioprinted hyaluronic acid-based
               cell-laden scaffold for brain microenvironment simulation.   42.  Suresh P. Saponins-uptake and targeting issues for brain-
               Bio-Design Manuf. 2020;3:164-174.                  specific delivery for enhanced cell death induction
               doi: 10.1007/s42242-020-00076-6                    in glioblastoma.  Lett Drug Des Discov. 2022;19(6):
                                                                  473-480.
            31.  de la Vega L, Lee C, Sharma R, Amereh M, Willerth SM. 3D
               bioprinting models of neural tissues: the current state of the      doi: 10.2174/1570180819666220121145332
               field and future directions. Brain Res Bull. 2019;150:240-249.  43.  Dai X, Ma C, Lan Q, Xu T. 3D bioprinted glioma stem cells for
               doi: 10.1016/j.brainresbull.2019.06.007            brain tumor model and applications of drug susceptibility.
                                                                  Biofabrication. 2016;8(4):045005.
            32.  Kumar SL, Sureka P, Sowmitha A, Sentisenla J, Swathy M.
               Recent advancements of hydroxyapatite and polyethylene      doi: 10.1088/1758-5090/8/4/045005
               glycol  (PEG)  composites  for  tissue  engineering  44.  Ahmed T. Biomaterial-based in vitro 3D modeling
               applications—a comprehensive review.  Eur Polym J.   of glioblastoma multiforme.  Cancer Pathog Ther.
               2024;215(9):113226.                                2023;1(3):177-194.
               doi: 10.1016/j.eurpolymj.2024.113226               doi: 10.1016/j.cpt.2023.01.002
            33.  Shi L, Zhang J, Zhao M, et al. Effects of polyethylene glycol   45.  Han S, Kim S, Chen Z, et al. 3D bioprinted vascularized
               on the surface of nanoparticles for targeted drug delivery.   tumour for drug testing. Int J Mol Sci. 2020;21(8):2993.
               Nanoscale. 2021;13(24):10748-10764.                doi: 10.3390/ijms21082993
               doi: 10.1039/D1NR02065J
                                                               46.  Kim EH, Song HS, Yoo SH, Yoon M. Tumor treating
            34.  Walus K, Beyer S, Willerth SM. Three-dimensional   fields inhibit glioblastoma cell migration, invasion and
               bioprinting healthy and diseased models of the brain tissue   angiogenesis. Oncotarget. 2016;7(40):65125-65136.
               using stem cells. Curr Opin Biomed Eng. 2020;14:25-33.     doi: 10.18632/oncotarget.11372
               doi: 10.1016/j.cobme.2020.03.002
                                                               47.  Tricinci O, De Pasquale D, Marino A, Battaglini M, Pucci
            35.  Lee SJ, Esworthy T, Stake S, et al. Advances in 3D bioprinting   C, Ciofani G. A 3D biohybrid real‐scale model of the brain
               for neural tissue engineering.  Adv Biosyst. 2018;2(4):   cancer microenvironment for advanced in vitro testing. Adv
               1700213.                                           Mater Technol. 2020;5(10):2000540.
               doi: 10.1002/adbi.201700213                        doi: 10.1002/admt.202000540
            36.  Esworthy TJ, Miao S, Lee S-J, et al. Advanced 4D-bioprinting   48.  Bakirci E, Schaefer N, Dahri O, et al. Melt electrowritten in
               technologies for brain tissue modeling and study. Int J Smart   vitro radial device to study cell growth and migration. Adv
               Nano Mater. 2019;10(3):177-204.                    Biosyst. 2020;4(10):2000077.
               doi: 10.1080/19475411.2019.1631899                 doi: 10.1002/adbi.202000077
            37.  Wang X, Dai X, Zhang X, et al. 3D bioprinted glioma   49.  Huang W, Ding X, Ye H, Wang J, Shao J, Huang T. Hypoxia
               cell‐laden scaffolds enriching glioma stem cells via   enhances the migration and invasion of human glioblastoma
               epithelial–mesenchymal transition. J Biomed Mater Res A.   U87 cells through PI3K/Akt/mTOR/HIF-1α pathway.
               2019;107(2):383-391.                               Neuroreport. 2018;29(18):1578-1585.
               doi: 10.1002/jbm.a.36549                           doi: 10.1097/WNR.0000000000001156



            Volume 10 Issue 6 (2024)                       168                                doi: 10.36922/ijb.4166
   171   172   173   174   175   176   177   178   179   180   181