Page 179 - IJB-10-6
P. 179

International Journal of Bioprinting                                3D bioprinting technology for brain tumor




               doi: 10.1016/j.yjmcc.2021.06.002                   doi: 10.1242/jcs.248237
            100. Pollet A, den Toonder JMJ. Recapitulating the vasculature   112. Greene C, Campbell M. Tight junction modulation of the
               using organ-on-chip technology.  Bioengineering (Basel).    blood brain barrier: CNS delivery of small molecules. Tissue
               2020;7(1):17.                                      Barriers. 2016;4(1):e1138017.
               doi: 10.3390/bioengineering7010017                 doi: 10.1080/21688370.2015.1138017
            101. Farhang Doost N, Srivastava SK. A comprehensive review of   113. Yang JY, Shin D-S, Jeong M, et al. Evaluation of drug
               organ-on-a-chip technology and its applications. Biosensors.   blood-brain-barrier permeability using a microfluidic chip.
               2024;14(5):225.                                    Pharmaceutics. 2024;16(5):574.
               doi: 10.3390/bios14050225                          doi: 10.3390/pharmaceutics16050574
            102. Kumar V, Varghese S. Ex vivo tumor‐on‐a‐chip platforms   114. Chittiboyina S, Rahimi R, Atrian F, Ochoa M, Ziaie B,
               to study intercellular interactions within the tumor   Lelievre SA. Gradient-on-a-chip with reactive oxygen
               microenvironment.  Adv  Healthc Mater. 2019;8(4):   species reveals thresholds in the nucleus response of cancer
               1801198.                                           cells depending on the matrix environment. ACS Biomater
               doi: 10.1002/adhm.201801198                        Sci Eng. 2018;4(2):432-445.
                                                                  doi: 10.1021/acsbiomaterials.7b00087
            103. Fetah K, Tebon P, Goudie MJ, et al. The emergence of 3D
               bioprinting in organ-on-chip systems.  Prog Biomed Eng.   115. Sontheimer-Phelps A, Hassell BA, Ingber DE. Modelling
               2019;1(1):012001.                                  cancer in microfluidic human organs-on-chips.  Nat Rev
               doi: 10.1088/2516-1091/ab23df                      Cancer. 2019;19(2):65-81.
                                                                  doi: 10.1038/s41568-018-0104-6
            104. Gao Q, Liu Z, Lin Z, et al. 3D bioprinting of vessel-like
               structures with multilevel fluidic channels.  ACS Biomater   116. Malik A, Pal R, Gupta SK. EGF-mediated reduced miR-92a-
               Sci Eng. 2017;3(3):399-408.                        1-5p controls HTR-8/SVneo cell invasion through activation
               doi: 10.1021/acsbiomaterials.6b00643               of MAPK8 and FAS which in turn increase MMP-2/-9
                                                                  expression. Sci Rep. 2020;10(1):12274.
            105. Samadian H, Jafari S, Sepand M, et al. 3D bioprinting
               technology to mimic the tumor microenvironment: tumor-     doi: 10.1038/s41598-020-68966-4
               on-a-chip concept. Mater Today Adv. 2021;12:100160.  117. Liu D, Yang T, Ma W, Wang Y. Clinical strategies to
               doi: 10.1016/j.mtadv.2021.100160                   manage adult glioblastoma patients without MGMT
            106. Alves AH, Nucci MP, Mamani JB, et al. The advances in   hypermethylation. J Cancer. 2022;13(1):354.
               glioblastoma on-a-chip for therapy approaches.  Cancers.      doi: 10.7150/jca.63595
               2022;14(4):869.                                 118. Qu S, Qi S, Zhang H, et al. Albumin-bound paclitaxel
               doi: 10.3390/cancers14040869
                                                                  augment temozolomide treatment sensitivity of glioblastoma
            107. Song Q, Sun J, Mu Y, Xu Y, Zhu Q, Jin Q. A new method   cells by disrupting DNA damage repair and promoting
               for polydimethylsiloxane (PDMS) microfluidic chips to   ferroptosis. J Exp Clin Cancer Res. 2023;42(1):285.
               maintain vacuum-driven power using Parylene C.  Sens      doi: 10.1186/s13046-023-02843-6
               Actuators B: Chem. 2018;256:1122-1130.          119. Tsai C-Y, Ko H-J, Huang C-YF,  et al.  Ionizing radiation
               doi: 10.1016/j.snb.2017.10.006
                                                                  induces resistant glioblastoma stem-like cells by
            108. Tabatabaei Rezaei N, Kumar H, Liu H, Lee SS, Park SS,   promoting autophagy via the Wnt/β-catenin pathway. Life.
               Kim K. Recent advances in organ-on-chips integrated with   2021;11(5):451.
               bioprinting technologies for drug screening.  Adv Healthc      doi: 10.3390/life11050451
               Mater. 2023;12(20):e2203172.                    120. Yu W, Zhang L, Wei Q, Shao A. O6-methylguanine-
               doi: 10.1002/adhm.202203172
                                                                  DNA methyltransferase (MGMT): challenges and new
            109. Nie  J,  Gao  Q,  Fu  J,  He  Y.  Grafting  of 3D  bioprinting  to   opportunities in glioma chemotherapy.  Front Oncol.
               in vitro drug screening: a review.  Adv Healthc Mater.   2020;9:1547.
               2020;9(7):e1901773.                                doi: 10.3389/fonc.2019.01547
               doi: 10.1002/adhm.201901773
                                                               121. Kohutova A, Munzova D, Pesl M, Rotrekl V. alpha(1)-
            110. Radhakrishnan J, Varadaraj S, Dash SK, Sharma A, Verma   Adrenoceptor agonist methoxamine inhibits base excision
               RS. Organotypic cancer tissue models for drug screening:   repair via inhibition of apurinic/apyrimidinic endonuclease
               3D  constructs,  bioprinting  and  microfluidic  chips.  Drug   1 (APE1). Acta Pharm. 2023;73(2):281-291.
               Discov Today. 2020;25(5):879-890.                  doi: 10.2478/acph-2023-0012
               doi: 10.1016/j.drudis.2020.03.002
                                                               122. Burman P, Lamb L, McCormack A. Temozolomide therapy
            111. Yang Z, Wu S, Fontana F, et al. The tight junction protein   for aggressive pituitary tumours–current understanding
               Claudin-5 limits endothelial cell motility.  J Cell Sci.   and future perspectives.  Rev Endocr Metab Disord.
               2021;134(1):jcs248237.                             2020;21:263-276.



            Volume 10 Issue 6 (2024)                       171                                doi: 10.36922/ijb.4166
   174   175   176   177   178   179   180   181   182   183   184