Page 177 - IJB-10-6
P. 177

International Journal of Bioprinting                                3D bioprinting technology for brain tumor




            50.  Smits IP, Blaschuk OW, Willerth SM. Novel N-cadherin      doi: 10.1002/adma.201806590
               antagonist causes glioblastoma cell death in a 3D bioprinted   62.  Wang L, Wang C, Wu S, Fan Y, Li X. Influence of the
               co-culture  model.  Biochem Biophys Res Commun.    mechanical properties of biomaterials on degradability, cell
               2020;529(2):162-168.                               behaviors and signaling pathways: current progress and
               doi: 10.1016/j.bbrc.2020.06.001
                                                                  challenges. Biomater Sci. 2020;8(10):2714-2733.
            51.  Wang X, Li X, Dai X, et al. Bioprinting of glioma stem cells      doi: 10.1039/D0BM00269K
               improves their endotheliogenic potential.  Colloids Surf B   63.  Tang M, Tiwari SK, Agrawal K, et al. Rapid 3D bioprinting
               Biointerfaces. 2018;171:629-637.                   of glioblastoma model mimicking native biophysical
               doi: 10.1016/j.colsurfb.2018.08.006
                                                                  heterogeneity. Small. 2021;17(15):2006050.
            52.  Böttcher B, Pflieger A, Schumacher J, Jungnickel B, Feller      doi: 10.1002/smll.202006050
               K-H.  3d  bioprinting  of  prevascularized  full-thickness   64.  Yue K, Trujillo-de Santiago G, Alvarez MM, Tamayol A,
               gelatin-alginate structures with embedded co-cultures.   Annabi N, Khademhosseini A. Synthesis, properties, and
               Bioengineering. 2022;9(6):242.                     biomedical applications of gelatin methacryloyl (GelMA)
               doi: 10.3390/bioengineering9060242
                                                                  hydrogels. Biomaterials. 2015;73:254-271.
            53.  Dai X, Liu L, Ouyang J, et al. Coaxial 3D bioprinting of self-     doi: 10.1016/j.biomaterials.2015.08.045
               assembled multicellular heterogeneous tumor fibers.  Sci   65.  Tavsanli B, Okay O. Mechanically strong hyaluronic acid
               Rep. 2017;7(1):1457.                               hydrogels with an interpenetrating network structure. Eur
               doi: 10.1038/s41598-017-01581-y
                                                                  Polym J. 2017;94:185-195.
            54.  Zhang Z, Chen X, Gao S, Fang X, Ren S. 3D bioprinted tumor      doi: 10.1016/j.eurpolymj.2017.07.009
               model: a prompt and convenient platform for overcoming
               immunotherapy resistance by recapitulating the tumor   66.  Stanković T, Ranđelović T, Dragoj M, et al. In vitro
               microenvironment. Cell Oncol (Dordr). 2024;47:1113-1126.  biomimetic models for glioblastoma-a promising tool
               doi: 10.1007/s13402-024-00935-9                    for drug response studies.  Drug Resiste Updates. 2021;55:
                                                                  100753.
            55.  Hermida MA, Kumar JD, Schwarz D, et al. Three dimensional      doi: 10.1016/j.drup.2021.100753
               in vitro models of cancer: Bioprinting multilineage
               glioblastoma models. Adv Biol Regul. 2020;75:100658.  67.  Ivanov DP, Parker TL, Walker DA, et al. In vitro co-culture
               doi: 10.1016/j.jbior.2019.100658                   model of medulloblastoma and human neural stem cells for
                                                                  drug delivery assessment. J Biotechnol. 2015;205:3-13.
            56.  Jamee R, Araf Y, Naser IB, Promon SK. The promising rise of      doi: 10.1016/j.jbiotec.2015.01.002
               bioprinting in revolutionalizing medical science: advances
               and possibilities. Regen Ther. 2021;18:133-145.  68.  Northcott PA, Robinson GW, Kratz CP, et al.
               doi: 10.1016/j.reth.2021.05.006                    Medulloblastoma. Nat Rev Dis Primers. 2019;5(1):11.
                                                                  doi: 10.1038/s41572-019-0063-6
            57.  Schiffer  D,  Annovazzi  L,  Casalone  C,  Corona  C,  Mellai
               M. Glioblastoma: microenvironment and niche concept.   69.  Reyhanoglu G, Tadi P. Etoposide; 2020.
               Cancers. 2018;11(1):5.                          70.  Iwadate  Y.  Epithelial-mesenchymal  transition  in
               doi: 10.3390/cancers11010005                       glioblastoma  progression.  Oncol  Lett.  2016;11(3):
                                                                  1615-1620.
            58.  Nieland L, Morsett LM, Broekman MLD, Breakefield
               XO, Abels ER. Extracellular vesicle-mediated bilateral      doi: 10.3892/ol.2016.4113
               communication  between glioblastoma and  astrocytes.   71.  Nowicki MO, Hayes JL, Chiocca EA, Lawler SE. Proteomic
               Trends Neurosci. 2021;44(3):215-226.               analysis implicates vimentin in glioblastoma cell migration.
               doi: 10.1016/j.tins.2020.10.014                    Cancers. 2019;11(4):466.
                                                                  doi: 10.3390/cancers11040466
            59.  Figueroa J, Phillips LM, Shahar T, et al. Exosomes from
               glioma-associated mesenchymal stem cells increase the   72.  Huleihel L, Dziki JL, Bartolacci JG, et al. Macrophage
               tumorigenicity of glioma stem-like cells via transfer of miR-  phenotype in response to ECM bioscaffolds. Semin Immunol.
               1587. Cancer Res. 2017;77(21):5808-5819.           2017;29:2-13.
               doi: 10.1158/0008-5472.can-16-2524                 doi: 10.1016/j.smim.2017.04.004
            60.  Parak A, Pradeep P, du Toit LC, Kumar P, Choonara   73.  Im JH, Buzzelli JN, Jones K, et al. FGF2 alters macrophage
               YE, Pillay V. Functionalizing bioinks for 3D bioprinting   polarization, tumour immunity and growth and can be
               applications. Drug Discov Today. 2019;24(1):198-205.  targeted during radiotherapy. Nat Commun. 2020;11(1):4064.
               doi: 10.1016/j.drudis.2018.09.012                  doi: 10.1038/s41467-020-17914-x
            61.  Heinrich MA, Bansal R, Lammers T, Zhang YS, Michel   74.  Chen Z, Feng X, Herting CJ, et al. Cellular and molecular
               Schiffelers R, Prakash J. 3D‐bioprinted mini‐brain: a   identity of tumor-associated macrophages in glioblastoma.
               glioblastoma model to study cellular interactions and   Cancer Res. 2017;77(9):2266-2278.
               therapeutics. Adv Mater. 2019;31(14):1806590.      doi: 10.1158/0008-5472.CAN-16-2310

            Volume 10 Issue 6 (2024)                       169                                doi: 10.36922/ijb.4166
   172   173   174   175   176   177   178   179   180   181   182