Page 177 - IJB-10-6
P. 177
International Journal of Bioprinting 3D bioprinting technology for brain tumor
50. Smits IP, Blaschuk OW, Willerth SM. Novel N-cadherin doi: 10.1002/adma.201806590
antagonist causes glioblastoma cell death in a 3D bioprinted 62. Wang L, Wang C, Wu S, Fan Y, Li X. Influence of the
co-culture model. Biochem Biophys Res Commun. mechanical properties of biomaterials on degradability, cell
2020;529(2):162-168. behaviors and signaling pathways: current progress and
doi: 10.1016/j.bbrc.2020.06.001
challenges. Biomater Sci. 2020;8(10):2714-2733.
51. Wang X, Li X, Dai X, et al. Bioprinting of glioma stem cells doi: 10.1039/D0BM00269K
improves their endotheliogenic potential. Colloids Surf B 63. Tang M, Tiwari SK, Agrawal K, et al. Rapid 3D bioprinting
Biointerfaces. 2018;171:629-637. of glioblastoma model mimicking native biophysical
doi: 10.1016/j.colsurfb.2018.08.006
heterogeneity. Small. 2021;17(15):2006050.
52. Böttcher B, Pflieger A, Schumacher J, Jungnickel B, Feller doi: 10.1002/smll.202006050
K-H. 3d bioprinting of prevascularized full-thickness 64. Yue K, Trujillo-de Santiago G, Alvarez MM, Tamayol A,
gelatin-alginate structures with embedded co-cultures. Annabi N, Khademhosseini A. Synthesis, properties, and
Bioengineering. 2022;9(6):242. biomedical applications of gelatin methacryloyl (GelMA)
doi: 10.3390/bioengineering9060242
hydrogels. Biomaterials. 2015;73:254-271.
53. Dai X, Liu L, Ouyang J, et al. Coaxial 3D bioprinting of self- doi: 10.1016/j.biomaterials.2015.08.045
assembled multicellular heterogeneous tumor fibers. Sci 65. Tavsanli B, Okay O. Mechanically strong hyaluronic acid
Rep. 2017;7(1):1457. hydrogels with an interpenetrating network structure. Eur
doi: 10.1038/s41598-017-01581-y
Polym J. 2017;94:185-195.
54. Zhang Z, Chen X, Gao S, Fang X, Ren S. 3D bioprinted tumor doi: 10.1016/j.eurpolymj.2017.07.009
model: a prompt and convenient platform for overcoming
immunotherapy resistance by recapitulating the tumor 66. Stanković T, Ranđelović T, Dragoj M, et al. In vitro
microenvironment. Cell Oncol (Dordr). 2024;47:1113-1126. biomimetic models for glioblastoma-a promising tool
doi: 10.1007/s13402-024-00935-9 for drug response studies. Drug Resiste Updates. 2021;55:
100753.
55. Hermida MA, Kumar JD, Schwarz D, et al. Three dimensional doi: 10.1016/j.drup.2021.100753
in vitro models of cancer: Bioprinting multilineage
glioblastoma models. Adv Biol Regul. 2020;75:100658. 67. Ivanov DP, Parker TL, Walker DA, et al. In vitro co-culture
doi: 10.1016/j.jbior.2019.100658 model of medulloblastoma and human neural stem cells for
drug delivery assessment. J Biotechnol. 2015;205:3-13.
56. Jamee R, Araf Y, Naser IB, Promon SK. The promising rise of doi: 10.1016/j.jbiotec.2015.01.002
bioprinting in revolutionalizing medical science: advances
and possibilities. Regen Ther. 2021;18:133-145. 68. Northcott PA, Robinson GW, Kratz CP, et al.
doi: 10.1016/j.reth.2021.05.006 Medulloblastoma. Nat Rev Dis Primers. 2019;5(1):11.
doi: 10.1038/s41572-019-0063-6
57. Schiffer D, Annovazzi L, Casalone C, Corona C, Mellai
M. Glioblastoma: microenvironment and niche concept. 69. Reyhanoglu G, Tadi P. Etoposide; 2020.
Cancers. 2018;11(1):5. 70. Iwadate Y. Epithelial-mesenchymal transition in
doi: 10.3390/cancers11010005 glioblastoma progression. Oncol Lett. 2016;11(3):
1615-1620.
58. Nieland L, Morsett LM, Broekman MLD, Breakefield
XO, Abels ER. Extracellular vesicle-mediated bilateral doi: 10.3892/ol.2016.4113
communication between glioblastoma and astrocytes. 71. Nowicki MO, Hayes JL, Chiocca EA, Lawler SE. Proteomic
Trends Neurosci. 2021;44(3):215-226. analysis implicates vimentin in glioblastoma cell migration.
doi: 10.1016/j.tins.2020.10.014 Cancers. 2019;11(4):466.
doi: 10.3390/cancers11040466
59. Figueroa J, Phillips LM, Shahar T, et al. Exosomes from
glioma-associated mesenchymal stem cells increase the 72. Huleihel L, Dziki JL, Bartolacci JG, et al. Macrophage
tumorigenicity of glioma stem-like cells via transfer of miR- phenotype in response to ECM bioscaffolds. Semin Immunol.
1587. Cancer Res. 2017;77(21):5808-5819. 2017;29:2-13.
doi: 10.1158/0008-5472.can-16-2524 doi: 10.1016/j.smim.2017.04.004
60. Parak A, Pradeep P, du Toit LC, Kumar P, Choonara 73. Im JH, Buzzelli JN, Jones K, et al. FGF2 alters macrophage
YE, Pillay V. Functionalizing bioinks for 3D bioprinting polarization, tumour immunity and growth and can be
applications. Drug Discov Today. 2019;24(1):198-205. targeted during radiotherapy. Nat Commun. 2020;11(1):4064.
doi: 10.1016/j.drudis.2018.09.012 doi: 10.1038/s41467-020-17914-x
61. Heinrich MA, Bansal R, Lammers T, Zhang YS, Michel 74. Chen Z, Feng X, Herting CJ, et al. Cellular and molecular
Schiffelers R, Prakash J. 3D‐bioprinted mini‐brain: a identity of tumor-associated macrophages in glioblastoma.
glioblastoma model to study cellular interactions and Cancer Res. 2017;77(9):2266-2278.
therapeutics. Adv Mater. 2019;31(14):1806590. doi: 10.1158/0008-5472.CAN-16-2310
Volume 10 Issue 6 (2024) 169 doi: 10.36922/ijb.4166

