Page 266 - IJB-10-6
P. 266

International Journal of Bioprinting                                  3D-printed contractive pennate muscle




               doi: 10.7554/eLife.04885                           doi: 10.1038/nprot.2009.155
            14.  Nagamine K, Kawashima T, Sekine S, Ido Y, Kanzaki M,   27.  Tanaka Y, Noguchi Y, Yalikun Y, Kamamichi N. Earthworm
               Nishizawa M. Spatiotemporally controlled contraction of   muscle driven bio-micropump.  Sens Actuator B Chem.
               micropatterned skeletal muscle cells on a hydrogel sheet.   2017;242:1186-1192.
               Lab Chip. 2011;11(3):513-517.                      doi: 10.1016/j.snb.2016.09.123
               doi: 10.1039/c0lc00364f                         28.  Liu  L, Zhang C,  Wang  W, Xi  N, Wang  Y. Regulation  of
            15.  Kamm RD, Bashir R. Creating living cellular machines.    C2C12 differentiation and control of the beating dynamics
               Ann of Biome Eng. 2013;42(2):445-459.              of contractile cells for a muscle-driven biosyncretic crawler
               doi: 10.1007/s10439-013-0902-7                     by electrical stimulation. Soft Robot. 2018;5(6):748-760.
                                                                  doi: 10.1089/soro.2018.0017
            16.  Chan V, Asada HH, Bashir R. Utilization and control
               of bioactuators across multiple length scales.  Lab Chip.   29.  Mita H, Mizuno Y, Tanaka H, Fujie T. UV laser-processed
               2014;14(4):653-670.                                microstructure for building biohybrid actuators with
               doi: 10.1039/c3lc50989c                            anisotropic movement. Biofabrication. 2024;16(2):025010.
                                                                  doi: 10.1088/1758-5090/ad2080
            17.  Ricotti L, Menciassi A. Bio-hybrid muscle cell-based
               actuators. Biomed Microdevices. 2012;14(6):987-998.  30.  Roberts TJ, Eng CM, Sleboda DA, et al. The multi-scale,
               doi: 10.1007/s10544-012-9697-9                     three-dimensional nature of skeletal muscle contraction.
                                                                  Physiology (Bethesda). 2019;34(6):402-408.
            18.  Zupan M, Ashby MF, Fleck NA. Actuator classification and
               selection—the development of a database. Adv Eng Mater.      doi: 10.1152/physiol.00023.2019
               2002;4(12):933-940.                             31.  Mestre  R, Patiño  T,  Barceló  X,  Anand  S,  Pérez‐Jiménez
               doi: 10.1002/adem.200290009                        A, Sánchez S. Force modulation and adaptability of 3d‐
                                                                  bioprinted biological actuators based on skeletal muscle
            19.  Coyle S, Majidi C, LeDuc P, Hsia KJ. Bio-inspired soft   tissue. Adv Mater Technol. 2018;4(2):1800631.
               robotics: material selection, actuation, and design.       doi: 10.1002/admt.201800631
               Extreme Mech Lett. 2018;22:51-59.
               doi: 10.1016/j.eml.2018.05.003                  32.  Markstedt K, Mantas A, Tournier I, Martínez Ávila H,
                                                                  Hägg D, Gatenholm P. 3D bioprinting human chondrocytes
            20.  Kim Y, Yang Y, Zhang X, et al. Remote control of muscle-
               driven miniature robots with battery-free wireless   with  nanocellulose–alginate  bioink  for  cartilage  tissue
               optoelectronics. Sci Robot. 2023;8(74):eadd1053.   engineering  applications.  Biomacromolecules.  2015;
               doi: 10.1126/scirobotics.add1053                   16(5):1489-1496.
                                                                  doi: 10.1021/acs.biomac.5b00188
            21.  Morimoto Y, Onoe H, Takeuchi S. Biohybrid robot powered   33.  Kolesky DB, Truby RL, Gladman AS, Busbee TA,
               by an antagonistic pair of skeletal muscle tissues. Sci Robot.   Homan KA, Lewis JA. 3D bioprinting of vascularized,
               2018;3(18):eaat4440.                               heterogeneous cell‐laden tissue constructs. Adv Mater. 2014;
               doi: 10.1126/scirobotics.aat4440
                                                                  26(19):3124-3130.
            22.  Gao GF, Cui XF. Three-dimensional bioprinting in tissue      doi: 10.1002/adma.201305506
               engineering and regenerative medicine.  Biotechnol Lett.
               2016;38(2):203-211.                             34.  Cernencu AI, Lungu A, Dragusin DM, et al. 3D bioprinting
               doi: 10.1007/s10529-015-1975-1                     of biosynthetic nanocellulose-filled gelma inks highly
                                                                  reliable for soft tissue-oriented constructs.  Materials.
            23.  Kim JH, Seol YJ, Ko IK, et al. 3D bioprinted human skeletal   2021;14(17):4891.
               muscle constructs for muscle function restoration. Sci Rep.      doi: 10.3390/ma14174891
               2018;8(1):12307.                                35.  Mao M, He J, Li Z, Han K, Li D. Multi-directional cellular
               doi: 10.1038/s41598-018-29968-5
                                                                  alignment  in  3D  guided  by  electrohydrodynamically-
            24.  Kang HW, Lee SJ, Ko IK, Kengla C, Yoo JJ, Atala A. A 3D   printed microlattices. Acta Biomater. 2020;101:141-151.
               bioprinting system to produce human-scale tissue constructs      doi: 10.1016/j.actbio.2019.10.028
               with structural integrity. Nat Biotechnol. 2016;34(3):312-319.  36.  Raman R, Cvetkovic C, Uzel SGM, et al. Optogenetic
               doi: 10.1038/nbt.3413
                                                                  skeletal muscle-powered adaptive biological machines.
            25.  Kim JH, Kim I, Seol YJ, et al. Neural cell integration into 3D   Proc Natl Acad Sci. 2016;113(13):3497-3502.
               bioprinted skeletal muscle constructs accelerates restoration      doi: 10.1073/pnas.1516139113
               of muscle function. Nat Commun. 2020;11(1)1025.  37.  Mestre R, Fuentes J, Lefaix L, et al. Improved performance
               doi: 10.1038/s41467-020-14930-9
                                                                  of biohybrid muscle‐based bio‐bots doped with
            26.  Bian WN, Liau B, Badie N, Bursac N. Mesoscopic hydrogel   piezoelectric boron nitride nanotubes. Adv Mater Technol.
               molding to control the 3D geometry of bioartificial muscle   2022;8(2):2200505.
               tissues. Nat Protoc. 2009;4(10):1522-1534.         doi: 10.1002/admt.202200505


            Volume 10 Issue 6 (2024)                       258                                doi: 10.36922/ijb.4371
   261   262   263   264   265   266   267   268   269   270   271