Page 266 - IJB-10-6
P. 266
International Journal of Bioprinting 3D-printed contractive pennate muscle
doi: 10.7554/eLife.04885 doi: 10.1038/nprot.2009.155
14. Nagamine K, Kawashima T, Sekine S, Ido Y, Kanzaki M, 27. Tanaka Y, Noguchi Y, Yalikun Y, Kamamichi N. Earthworm
Nishizawa M. Spatiotemporally controlled contraction of muscle driven bio-micropump. Sens Actuator B Chem.
micropatterned skeletal muscle cells on a hydrogel sheet. 2017;242:1186-1192.
Lab Chip. 2011;11(3):513-517. doi: 10.1016/j.snb.2016.09.123
doi: 10.1039/c0lc00364f 28. Liu L, Zhang C, Wang W, Xi N, Wang Y. Regulation of
15. Kamm RD, Bashir R. Creating living cellular machines. C2C12 differentiation and control of the beating dynamics
Ann of Biome Eng. 2013;42(2):445-459. of contractile cells for a muscle-driven biosyncretic crawler
doi: 10.1007/s10439-013-0902-7 by electrical stimulation. Soft Robot. 2018;5(6):748-760.
doi: 10.1089/soro.2018.0017
16. Chan V, Asada HH, Bashir R. Utilization and control
of bioactuators across multiple length scales. Lab Chip. 29. Mita H, Mizuno Y, Tanaka H, Fujie T. UV laser-processed
2014;14(4):653-670. microstructure for building biohybrid actuators with
doi: 10.1039/c3lc50989c anisotropic movement. Biofabrication. 2024;16(2):025010.
doi: 10.1088/1758-5090/ad2080
17. Ricotti L, Menciassi A. Bio-hybrid muscle cell-based
actuators. Biomed Microdevices. 2012;14(6):987-998. 30. Roberts TJ, Eng CM, Sleboda DA, et al. The multi-scale,
doi: 10.1007/s10544-012-9697-9 three-dimensional nature of skeletal muscle contraction.
Physiology (Bethesda). 2019;34(6):402-408.
18. Zupan M, Ashby MF, Fleck NA. Actuator classification and
selection—the development of a database. Adv Eng Mater. doi: 10.1152/physiol.00023.2019
2002;4(12):933-940. 31. Mestre R, Patiño T, Barceló X, Anand S, Pérez‐Jiménez
doi: 10.1002/adem.200290009 A, Sánchez S. Force modulation and adaptability of 3d‐
bioprinted biological actuators based on skeletal muscle
19. Coyle S, Majidi C, LeDuc P, Hsia KJ. Bio-inspired soft tissue. Adv Mater Technol. 2018;4(2):1800631.
robotics: material selection, actuation, and design. doi: 10.1002/admt.201800631
Extreme Mech Lett. 2018;22:51-59.
doi: 10.1016/j.eml.2018.05.003 32. Markstedt K, Mantas A, Tournier I, Martínez Ávila H,
Hägg D, Gatenholm P. 3D bioprinting human chondrocytes
20. Kim Y, Yang Y, Zhang X, et al. Remote control of muscle-
driven miniature robots with battery-free wireless with nanocellulose–alginate bioink for cartilage tissue
optoelectronics. Sci Robot. 2023;8(74):eadd1053. engineering applications. Biomacromolecules. 2015;
doi: 10.1126/scirobotics.add1053 16(5):1489-1496.
doi: 10.1021/acs.biomac.5b00188
21. Morimoto Y, Onoe H, Takeuchi S. Biohybrid robot powered 33. Kolesky DB, Truby RL, Gladman AS, Busbee TA,
by an antagonistic pair of skeletal muscle tissues. Sci Robot. Homan KA, Lewis JA. 3D bioprinting of vascularized,
2018;3(18):eaat4440. heterogeneous cell‐laden tissue constructs. Adv Mater. 2014;
doi: 10.1126/scirobotics.aat4440
26(19):3124-3130.
22. Gao GF, Cui XF. Three-dimensional bioprinting in tissue doi: 10.1002/adma.201305506
engineering and regenerative medicine. Biotechnol Lett.
2016;38(2):203-211. 34. Cernencu AI, Lungu A, Dragusin DM, et al. 3D bioprinting
doi: 10.1007/s10529-015-1975-1 of biosynthetic nanocellulose-filled gelma inks highly
reliable for soft tissue-oriented constructs. Materials.
23. Kim JH, Seol YJ, Ko IK, et al. 3D bioprinted human skeletal 2021;14(17):4891.
muscle constructs for muscle function restoration. Sci Rep. doi: 10.3390/ma14174891
2018;8(1):12307. 35. Mao M, He J, Li Z, Han K, Li D. Multi-directional cellular
doi: 10.1038/s41598-018-29968-5
alignment in 3D guided by electrohydrodynamically-
24. Kang HW, Lee SJ, Ko IK, Kengla C, Yoo JJ, Atala A. A 3D printed microlattices. Acta Biomater. 2020;101:141-151.
bioprinting system to produce human-scale tissue constructs doi: 10.1016/j.actbio.2019.10.028
with structural integrity. Nat Biotechnol. 2016;34(3):312-319. 36. Raman R, Cvetkovic C, Uzel SGM, et al. Optogenetic
doi: 10.1038/nbt.3413
skeletal muscle-powered adaptive biological machines.
25. Kim JH, Kim I, Seol YJ, et al. Neural cell integration into 3D Proc Natl Acad Sci. 2016;113(13):3497-3502.
bioprinted skeletal muscle constructs accelerates restoration doi: 10.1073/pnas.1516139113
of muscle function. Nat Commun. 2020;11(1)1025. 37. Mestre R, Fuentes J, Lefaix L, et al. Improved performance
doi: 10.1038/s41467-020-14930-9
of biohybrid muscle‐based bio‐bots doped with
26. Bian WN, Liau B, Badie N, Bursac N. Mesoscopic hydrogel piezoelectric boron nitride nanotubes. Adv Mater Technol.
molding to control the 3D geometry of bioartificial muscle 2022;8(2):2200505.
tissues. Nat Protoc. 2009;4(10):1522-1534. doi: 10.1002/admt.202200505
Volume 10 Issue 6 (2024) 258 doi: 10.36922/ijb.4371

