Page 288 - IJB-10-6
P. 288
International Journal of Bioprinting Skin bioprinting: Keratinocytes and stem cells
soft tissue engineering: characterization and evaluation. 22. Bannasch H, Unterberg T, Föhn M, Weyand B, Horch RE,
Mater Sci Eng C. 2017;71:678-684. Stark GB. Cultured keratinocytes in fibrin with decellularised
dermis close porcine full-thickness wounds in a single step.
11. Catanzano O, D’Esposito V, Acierno S, et al. Alginate–
hyaluronan composite hydrogels accelerate wound healing Burns. 2008;34(7):1015-1021.
process. Carbohydr Polym. 2015;131:407-414. doi: 10.1016/j.burns.2007.12.009
doi: 10.1016/j.carbpol.2015.05.081 23. Hunyadi J, Farkas B, Bertényi C, Oláh J, Dobozy A.
Keratinocyte grafting: a new means of transplantation for full-
12. Wang S, Xiong Y, Chen J, et al. Three dimensional printing thickness wounds. J Dermatol Surg Oncol. 1988;14(1):75-78.
bilayer membrane scaffold promotes wound healing. Front doi: 10.1111/j.1524-4725.1988.tb03343.x
Bioeng Biotechnol. 2019;7:348.
doi: 10.3389/fbioe.2019.00348 24. Thamm OC, Theodorou P, Stuermer E, et al. Adipose-
derived stem cells and keratinocytes in a chronic wound
13. Yue K, Trujillo-de Santiago G, Alvarez MM, Tamayol A, cell culture model: the role of hydroxyectoine. Int Wound J.
Annabi N, Khademhosseini A. Synthesis, properties, and 2015;12(4):387-396.
biomedical applications of gelatin methacryloyl (GelMA) doi: 10.1111/iwj.12120
hydrogels. Biomaterials. 2015;73:254-271.
doi: 10.1016/j.biomaterials.2015.08.045 25. Jorgensen AM, Varkey M, Gorkun A, et al. Bioprinted skin
recapitulates normal collagen remodeling in full-thickness
14. Cohen B, Pinkas O, Foox M, Zilberman M. Gelatin–alginate wounds. Tissue Eng Part A. 2020;26(9-10):512-526.
novel tissue adhesives and their formulation–strength doi: 10.1089/ten.TEA.2019.0319
effects. Acta Biomater. 2013;9(11):9004-9011.
doi: 10.1016/j.actbio.2013.07.002 26. Schulik J, Salehi S, Boccaccini AR, et al. Comparison of the
behavior of 3D-printed endothelial cells in different bioinks.
15. Schmid R, Schmidt SK, Detsch R, et al. A new printable Bioengineering (Basel). 2023;10(7):751.
alginate/hyaluronic acid/gelatin hydrogel suitable for doi: 10.3390/bioengineering10070751
biofabrication of in vitro and in vivo metastatic melanoma
models. Adv Funct Mater. 2022;32(2):2107993. 27. Safikhani MM, Asefnejad A, Aghdam RM, Rahmati S.
doi: 10.1002/adfm.202107993 Fabrication, and characterization of crosslinked sodium
alginate/hyaluronic acid/gelatin 3Dprinted heparin-loaded
16. Kim BS, Gao G, Kim JY, Cho D-W. 3D cell printing of scaffold. J Polym Res. 2024;31(4):121.
perfusable vascularized human skin equivalent composed doi: 10.1007/s10965-024-03942-4
of epidermis, dermis, and hypodermis for better
structural recapitulation of native skin. Adv Healthc Mater. 28. Christensen K, Xu C, Chai W, Zhang Z, Fu J, Huang
2019;8(7):1801019. Y. Freeform inkjet printing of cellular structures with
doi: 10.1002/adhm.201801019 bifurcations. Biotechnol Bioeng. 2015;112(5):1047-1055.
17. Zhao X, Lang Q, Yildirimer L, et al. Photocrosslinkable 29. Sakai S, Ohi H, Hotta T, Kamei H, Taya M. Differentiation
gelatin hydrogel for epidermal tissue engineering. Adv potential of human adipose stem cells bioprinted with hyaluronic
Healthc Mater. 2016;5(1):108-118. acid/gelatin-based bioink through microextrusion and visible
doi: 10.1002/adhm.201500005 light-initiated crosslinking. Biopolymers. 2018;109(2).
18. Billiet T, Gevaert E, De Schryver T, Cornelissen M, Dubruel doi: 10.1002/bip.23080
P. The 3D printing of gelatin methacrylamide cell-laden 30. Law N, Doney B, Glover H, et al. Characterisation
tissue-engineered constructs with high cell viability. of hyaluronic acid methylcellulose hydrogels for 3D
Biomaterials. 2014;35(1):49-62. bioprinting. J Mech Behav Biomed Mater. 2018;77:389-399.
doi: 10.1016/j.biomaterials.2013.09.078 doi: 10.1016/j.jmbbm.2017.09.031
19. Heltmann-Meyer S, Steiner D, Müller C, et al. Gelatin 31. Marfia G, Navone SE, Di Vito C, et al. Mesenchymal stem
methacryloyl is a slow degrading material allowing cells: potential for therapy and treatment of chronic non-
vascularization and long-term usein vivo. Biomed Mater. healing skin wounds. Organogenesis. 2015;11(4):183-206.
2021;16(6). doi: 10.1080/15476278.2015.1126018
doi: 10.1088/1748-605X/ac1e9d
32. Mazini L, Rochette L, Admou B, Amal S, Malka G. Hopes
20. Gopinathan J, Noh I. Recent trends in bioinks for 3D and limits of adipose-derived stem cells (ADSCs) and
printing. Biomater Res. 2018;22(1):11. mesenchymal stem cells (MSCs) in wound healing. Int J Mol
doi: 10.1186/s40824-018-0122-1 Sci. 2020;21(4):1306.
21. Horch RE, Bannasch H, Kopp J, Andree C, Stark GB. doi: 10.3390/ijms21041306
Single-cell suspensions of cultured human keratinocytes 33. Seo BF, Kim KJ, Kim MK, Rhie JW. The effects of human
in fibrin–glue reconstitute the epidermis. Cell Transplant. keratinocyte coculture on human adipose-derived stem
1998;7(3):309-317. cells. Int Wound J. 2016;13(5):630-635.
doi: 10.1177/096368979800700309 doi: 10.1111/iwj.12335
Volume 10 Issue 6 (2024) 280 doi: 10.36922/ijb.3925

