Page 501 - IJB-10-6
P. 501
International Journal of Bioprinting Nanomaterial-bioinks for DLP bioprinting
46. Zhang L, Li X, Shi C, et al. Biocompatibility and angiogenic potential neuralized bone regeneration. J Mater Chem B.
effect of chitosan/graphene oxide hydrogel scaffolds on 2023;11(6):1288-1301.
EPCs. Stem Cells International. 2021;2021:5594370. doi: 10.1039/D2TB01979E
doi: 10.1155/2021/5594370
57. Khan MUA, Razak SIA, Rehman S, Hasan A, Qureshi S,
47. Zhihui K, Min D. Application of graphene oxide-based Stojanovic GM. Bioactive scaffold (sodium alginate)-g-
hydrogels in bone tissue engineering. ACS Biomater Sci Eng. (nHAp@SiO(2)@GO) for bone tissue engineering. Int J Biol
2022;8(7):2849-2857. Macromol. 2022;222(Pt A):462-472.
doi: 10.1021/acsbiomaterials.2c00396 doi: 10.1016/j.ijbiomac.2022.09.153
48. Zhou C, Liu S, Li J, et al. Collagen functionalized with 58. Qi F, Wang C, Peng S, Shuai C, Yang W, Zhao Z. A co-
graphene oxide enhanced biomimetic mineralization dispersed nanosystem of strontium-anchored reduced
and in situ bone defect repair. ACS Appl Mater Interfaces. graphene oxide to enhance the bioactivity and mechanical
2018;10(50):44080-44091. property of polymer scaffolds. Mater Chem Front. 2021;5(5):
doi: 10.1021/acsami.8b17636 2373-2386.
doi: 10.1039/D0QM00958J
49. Jeong J-T, Choi M-K, Sim Y, et al. Effect of graphene oxide
ratio on the cell adhesion and growth behavior on a graphene 59. Shuai C, Guo W, Wu P, et al. A graphene oxide-Ag co-
oxide-coated silicon substrate. Sci Rep. 2016;6(1):33835. dispersing nanosystem: dual synergistic effects on
doi: 10.1038/srep33835 antibacterial activities and mechanical properties of polymer
scaffolds. Chem Eng J. 2018;347:322-333.
50. Choe G, Oh S, Seok JM, Park SA, Lee JY. Graphene oxide/
alginate composites as novel bioinks for three-dimensional doi: 10.1016/j.cej.2018.04.092
mesenchymal stem cell printing and bone regeneration 60. Saini G, Segaran N, Mayer JL, Saini A, Albadawi
applications. Nanoscale. 2019;11(48):23275-23285. H, Oklu R. Applications of 3D bioprinting in tissue
doi: 10.1039/C9NR07643C engineering and regenerative medicine. J Clin Med. 2021;
10(21):4966.
51. Schmidleithner C, Malferrari S, Palgrave R, Bomze D,
Schwentenwein M, Kalaskar DM. Application of high doi: 10.3390/jcm10214966
resolution DLP stereolithography for fabrication of 61. Vallet-Regí M, González-Calbet JM. Calcium phosphates as
tricalcium phosphate scaffolds for bone regeneration. substitution of bone tissues. Progress in Solid State Chemistry.
Biomed Mater. 2019;14(4):045018. 2004;32(1):1-31.
doi: 10.1088/1748-605X/ab279d doi: 10.1016/j.progsolidstchem.2004.07.001
52. Bhattacharyya A, Janarthanan G, Kim T, et al. Modulation 62. Zhou B, Jiang X, Zhou X, et al. GelMA-based bioactive
of bioactive calcium phosphate micro/nanoparticle size hydrogel scaffolds with multiple bone defect repair functions:
and shape during in situ synthesis of photo-crosslinkable therapeutic strategies and recent advances. Biomater Res.
gelatin methacryloyl based nanocomposite hydrogels 2023;27(1):86.
for 3D bioprinting and tissue engineering. Biomater Res. doi: 10.1186/s40824-023-00422-6
2022;26(1):54. 63. Ginebra M-P, Espanol M, Maazouz Y, Bergez V, Pastorino
doi: 10.1186/s40824-022-00301-6
D. Bioceramics and bone healing. EFORT Open Rev.
53. Choi JB, Kim YK, Byeon SM, et al. Fabrication and 2018;3(5):173-183.
characterization of biodegradable gelatin methacrylate/ doi: 10.1302/2058-5241.3.170056
biphasic calcium phosphate composite hydrogel for bone 64. Alvarez K, Nakajima H. Metallic scaffolds for bone
tissue engineering. Nanomaterials (Basel). 2021;11(3):617. regeneration. Materials. 2009;2(3):790-832.
doi: 10.3390/nano11030617
doi: 10.3390/ma2030790
54. Lee DN, Park JY, Seo YW, et al. Photo-crosslinked gelatin 65. Kühl J, Gorb S, Kern M, et al. Extrusion-based 3D printing
methacryloyl hydrogel strengthened with calcium phosphate- of osteoinductive scaffolds with a spongiosa-inspired
based nanoparticles for early healing of rabbit calvarial structure. Front Bioeng Biotechnol. 2023;11:1268049.
defects. J Periodontal Implant Sci. 2023;53(5):321-335. doi: 10.3389/fbioe.2023.1268049
doi: 10.5051/jpis.2203220161
66. Wang F, Saure LM, Schütt F, et al. Graphene oxide framework
55. Ren-Jie X, Jin-Jin M, Yu X, et al. A biphasic calcium structures and coatings: impact on cell adhesion and pre-
phosphate/acylated methacrylate gelatin composite vascularization processes for bone grafts. Int J Mol Sci.
hydrogel promotes osteogenesis and bone repair. Connect 2022;23(6):3379.
Tissue Res. 2023;64(5):445-456. doi: 10.3390/ijms23063379
doi: 10.1080/03008207.2023.2212067
67. Kolbe M, Xiang Z, Dohle E, Tonak M, Kirkpatrick CJ, Fuchs
56. Zhang X, Zhang H, Zhang Y, et al. 3D printed reduced S. Paracrine effects influenced by cell culture medium and
graphene oxide-GelMA hybrid hydrogel scaffolds for consequences on microvessel-like structures in cocultures
Volume 10 Issue 6 (2024) 493 doi: 10.36922/ijb.4015

