Page 501 - IJB-10-6
P. 501

International Journal of Bioprinting                                 Nanomaterial-bioinks for DLP bioprinting




            46.  Zhang L, Li X, Shi C, et al. Biocompatibility and angiogenic   potential neuralized bone regeneration.  J Mater Chem B.
               effect of chitosan/graphene oxide hydrogel scaffolds on   2023;11(6):1288-1301.
               EPCs. Stem Cells International. 2021;2021:5594370.     doi: 10.1039/D2TB01979E
               doi: 10.1155/2021/5594370
                                                               57.  Khan  MUA,  Razak  SIA,  Rehman  S,  Hasan  A,  Qureshi  S,
            47.  Zhihui K, Min D. Application of graphene oxide-based   Stojanovic GM. Bioactive scaffold (sodium alginate)-g-
               hydrogels in bone tissue engineering. ACS Biomater Sci Eng.   (nHAp@SiO(2)@GO) for bone tissue engineering. Int J Biol
               2022;8(7):2849-2857.                               Macromol. 2022;222(Pt A):462-472.
               doi: 10.1021/acsbiomaterials.2c00396               doi: 10.1016/j.ijbiomac.2022.09.153
            48.  Zhou C, Liu S, Li J, et al. Collagen functionalized with   58.  Qi  F,  Wang  C,  Peng  S,  Shuai  C,  Yang  W,  Zhao  Z.  A co-
               graphene oxide enhanced biomimetic mineralization   dispersed  nanosystem  of  strontium-anchored  reduced
               and in situ bone defect repair. ACS Appl Mater Interfaces.   graphene oxide to enhance the bioactivity and mechanical
               2018;10(50):44080-44091.                           property of polymer scaffolds. Mater Chem Front. 2021;5(5):
               doi: 10.1021/acsami.8b17636                        2373-2386.
                                                                  doi: 10.1039/D0QM00958J
            49.  Jeong J-T, Choi M-K, Sim Y, et al. Effect of graphene oxide
               ratio on the cell adhesion and growth behavior on a graphene   59.  Shuai C, Guo W, Wu P, et al. A graphene oxide-Ag co-
               oxide-coated silicon substrate. Sci Rep. 2016;6(1):33835.  dispersing nanosystem: dual synergistic effects on
               doi: 10.1038/srep33835                             antibacterial activities and mechanical properties of polymer
                                                                  scaffolds. Chem Eng J. 2018;347:322-333.
            50.  Choe G, Oh S, Seok JM, Park SA, Lee JY. Graphene oxide/
               alginate composites as novel bioinks for three-dimensional      doi: 10.1016/j.cej.2018.04.092
               mesenchymal stem cell printing and bone regeneration   60.  Saini G, Segaran N, Mayer JL, Saini A, Albadawi
               applications. Nanoscale. 2019;11(48):23275-23285.  H, Oklu R. Applications of 3D bioprinting in tissue
               doi: 10.1039/C9NR07643C                            engineering and regenerative medicine. J Clin Med. 2021;
                                                                  10(21):4966.
            51.  Schmidleithner C, Malferrari S, Palgrave R, Bomze D,
               Schwentenwein M, Kalaskar DM.  Application of high      doi: 10.3390/jcm10214966
               resolution DLP stereolithography for fabrication of   61.  Vallet-Regí M, González-Calbet JM. Calcium phosphates as
               tricalcium phosphate scaffolds for bone regeneration.   substitution of bone tissues. Progress in Solid State Chemistry.
               Biomed Mater. 2019;14(4):045018.                   2004;32(1):1-31.
               doi: 10.1088/1748-605X/ab279d                      doi: 10.1016/j.progsolidstchem.2004.07.001
            52.  Bhattacharyya A, Janarthanan G, Kim T, et al. Modulation   62.  Zhou B, Jiang X, Zhou X, et al. GelMA-based bioactive
               of bioactive calcium phosphate micro/nanoparticle size   hydrogel scaffolds with multiple bone defect repair functions:
               and shape during in situ synthesis of photo-crosslinkable   therapeutic strategies and recent advances.  Biomater Res.
               gelatin methacryloyl  based  nanocomposite  hydrogels   2023;27(1):86.
               for 3D bioprinting and tissue engineering.  Biomater Res.      doi: 10.1186/s40824-023-00422-6
               2022;26(1):54.                                  63.  Ginebra M-P, Espanol M, Maazouz Y, Bergez V, Pastorino
               doi: 10.1186/s40824-022-00301-6
                                                                  D. Bioceramics and bone healing.  EFORT Open Rev.
            53.  Choi JB, Kim YK, Byeon SM, et al. Fabrication and   2018;3(5):173-183.
               characterization of  biodegradable gelatin methacrylate/     doi: 10.1302/2058-5241.3.170056
               biphasic calcium phosphate composite hydrogel for bone   64.  Alvarez K, Nakajima H. Metallic scaffolds for bone
               tissue engineering. Nanomaterials (Basel). 2021;11(3):617.  regeneration. Materials. 2009;2(3):790-832.
               doi: 10.3390/nano11030617
                                                                  doi: 10.3390/ma2030790
            54.  Lee DN, Park JY, Seo YW, et al. Photo-crosslinked gelatin   65.  Kühl J, Gorb S, Kern M, et al. Extrusion-based 3D printing
               methacryloyl hydrogel strengthened with calcium phosphate-  of osteoinductive scaffolds with a spongiosa-inspired
               based nanoparticles for early healing of rabbit calvarial   structure. Front Bioeng Biotechnol. 2023;11:1268049.
               defects. J Periodontal Implant Sci. 2023;53(5):321-335.  doi:  10.3389/fbioe.2023.1268049
               doi: 10.5051/jpis.2203220161
                                                               66.  Wang F, Saure LM, Schütt F, et al. Graphene oxide framework
            55.  Ren-Jie X, Jin-Jin M, Yu X, et al. A biphasic calcium   structures and coatings: impact on cell adhesion and pre-
               phosphate/acylated  methacrylate  gelatin  composite  vascularization  processes  for  bone  grafts.  Int J Mol Sci.
               hydrogel promotes osteogenesis and bone repair.  Connect   2022;23(6):3379.
               Tissue Res. 2023;64(5):445-456.                    doi:  10.3390/ijms23063379
               doi: 10.1080/03008207.2023.2212067
                                                               67.  Kolbe M, Xiang Z, Dohle E, Tonak M, Kirkpatrick CJ, Fuchs
            56.  Zhang X, Zhang H, Zhang Y, et al. 3D printed reduced   S. Paracrine effects influenced by cell culture medium and
               graphene  oxide-GelMA hybrid hydrogel scaffolds for   consequences  on  microvessel-like  structures  in  cocultures



            Volume 10 Issue 6 (2024)                       493                                doi: 10.36922/ijb.4015
   496   497   498   499   500   501   502   503   504   505   506