Page 500 - IJB-10-6
P. 500

International Journal of Bioprinting                                 Nanomaterial-bioinks for DLP bioprinting




               a tale of nano-, micro-, and macroscale integration. Small.   cell culture assessment.  Micromachines (Basel). 2022;
               2016;12(16):2130-2145.                             14(1):55.
               doi: 10.1002/smll.201501798                        doi: 10.3390/mi14010055
            23.  Wüst S, Müller R, Hofmann S. Controlled positioning of cells   35.  Sun X, Ma Z, Zhao X, et al. Three-dimensional bioprinting
               in biomaterials—approaches towards 3D tissue printing.    of multicell-laden scaffolds containing bone morphogenic
               J Funct Biomater. 2011;2(3):119-154.               protein-4 for promoting M2 macrophage polarization and
               doi: 10.3390/jfb2030119                            accelerating bone defect repair in diabetes mellitus. Bioact
            24.  Murphy SV, Atala A. 3D bioprinting of tissues and organs.   Mater. 2021;6(3):757-769.
               Nat Biotechnol. 2014;32(8):773-785.                doi: 10.1016/j.bioactmat.2020.08.030
               doi: 10.1038/nbt.2958                           36.  Yi S, Liu Q, Luo Z, et al. Micropore-forming gelatin
            25.  Liu Y, Chan-Park MB. A biomimetic hydrogel based on   methacryloyl (GelMA) bioink toolbox 2.0: designable
               methacrylated dextran-graft-lysine and gelatin for 3D smooth   tunability and adaptability for 3D bioprinting applications.
               muscle cell culture. Biomaterials. 2010;31(6):1158-1170.  Small. 2022;18(25):e2106357.
               doi: 10.1016/j.biomaterials.2009.10.040            doi: 10.1002/smll.202106357
            26.  Jeong HJ, Nam H, Jang J, Lee SJ. 3D Bioprinting strategies   37.  Billiet T, Gevaert E, De Schryver T, Cornelissen M, Dubruel
               for the regeneration of functional tubular tissues and organs.   P. The 3D printing of gelatin methacrylamide cell-laden
               Bioengineering (Basel). 2020;7(2):32.              tissue-engineered constructs with high cell viability.
               doi: 10.3390/bioengineering7020032                 Biomaterials. 2014;35(1):49-62.
                                                                  doi: 10.1016/j.biomaterials.2013.09.078
            27.  Xu T, Zhao W, Zhu J-M, Albanna MZ, Yoo JJ, Atala A.
               Complex heterogeneous tissue constructs containing   38.  Hospodiuk M, Dey M, Sosnoski D, Ozbolat IT. The bioink: a
               multiple cell types prepared by inkjet printing technology.   comprehensive review on bioprintable materials. Biotechnol
               Biomaterials. 2013;34(1):130-139.                  Adv. 2017;35(2):217-239.
               doi: 10.1016/j.biomaterials.2012.09.035            doi: 10.1016/j.biotechadv.2016.12.006
            28.  Li J, Mooney DJ. Designing hydrogels for controlled drug   39.  Gopinathan J, Noh I. Recent trends in bioinks for 3D
               delivery. Nat Rev Mater. 2016;1(12):16071.         printing. Biomater Res. 2018/04/06 2018;22(1):11.
               doi: 10.1038/natrevmats.2016.71                    doi: 10.1186/s40824-018-0122-1
            29.  Gao J, Li M, Cheng J, et al. 3D-printed GelMA/PEGDA/  40.  Jammalamadaka U, Tappa K. Recent advances in
               F127DA scaffolds for bone regeneration. J Funct Biomater.   biomaterials for 3D printing and tissue engineering. J Funct
               2023;14(2):96.                                     Biomater. 2018;9(1):22.
               doi: 10.3390/jfb14020096                           doi: 10.3390/jfb9010022
            30.  Gao J, Wang H, Li M, et al. DLP-printed GelMA-PMAA   41.  Huh J, Moon YW, Park J, Atala A, Yoo JJ, Lee SJ. Combinations
               scaffold for bone regeneration through endochondral   of photoinitiator and UV absorber for cell-based digital light
               ossification. Int J Bioprint. 2023;9(5):754.       processing (DLP) bioprinting.  Biofabrication. 2021;13(3):
               doi: 10.18063/ijb.754                              034103.
                                                                  doi: 10.1088/1758-5090/abfd7a
            31.  Shi H, Li Y, Xu K, Yin J. Advantages of photo-curable collagen-
               based cell-laden bioinks compared to methacrylated gelatin   42.  Peng X, Liu X, Yang Y, et al. Graphene oxide functionalized
               (GelMA) in digital light processing (DLP) and extrusion   gelatin methacryloyl microgel for enhanced biomimetic
               bioprinting. Mater Today Bio. 2023;23:100799.      mineralization and in situ bone repair. Int J Nanomedicine.
               doi: 10.1016/j.mtbio.2023.100799                   2023;18:6725-6741.
                                                                  doi: 10.2147/ijn.S433624
            32.  Kurian AG, Singh RK, Patel KD, Lee JH, Kim HW.
               Multifunctional  GelMA  platforms  with  nanomaterials   43.  Dinescu S, Ionita M, Ignat SR, Costache M, Hermenean A.
               for advanced tissue therapeutics.  Bioact Mater. 2022;8:   Graphene oxide enhances chitosan-based 3D scaffold properties
               267-295.                                           for bone tissue engineering. Int J Mol Sci. 2019;20(20):5077.
               doi: 10.1016/j.bioactmat.2021.06.027               doi: 10.3390/ijms20205077
            33.  Li J, Moeinzadeh S, Kim C, et al. Development and systematic   44.  Li J, Liu X, Crook JM, Wallace GG. Development of 3D
               characterization of  GelMA/alginate/PEGDMA/xanthan   printable graphene oxide based bio-ink for cell support and
               gum hydrogel bioink system for extrusion bioprinting.   tissue engineering. Front Bioeng Biotechnol. 2022;10:994776.
               Biomaterials. 2023;293:121969.                     doi: 10.3389/fbioe.2022.994776
               doi: 10.1016/j.biomaterials.2022.121969
                                                               45.  Wang C, Mallela J, Garapati US, et al. A chitosan-modified
            34.  Pérez-Cortez JE,  Sánchez-Rodríguez  VH,  Gallegos-  graphene nanogel for noninvasive controlled drug release.
               Martínez S, et al. Low-cost light-based GelMA 3D   Nanomed Nanotechnol Biol Med. 2013;9(7):903-911.
               bioprinting via retrofitting: manufacturability test and      doi: 10.1016/j.nano.2013.01.003


            Volume 10 Issue 6 (2024)                       492                                doi: 10.36922/ijb.4015
   495   496   497   498   499   500   501   502   503   504   505