Page 500 - IJB-10-6
P. 500
International Journal of Bioprinting Nanomaterial-bioinks for DLP bioprinting
a tale of nano-, micro-, and macroscale integration. Small. cell culture assessment. Micromachines (Basel). 2022;
2016;12(16):2130-2145. 14(1):55.
doi: 10.1002/smll.201501798 doi: 10.3390/mi14010055
23. Wüst S, Müller R, Hofmann S. Controlled positioning of cells 35. Sun X, Ma Z, Zhao X, et al. Three-dimensional bioprinting
in biomaterials—approaches towards 3D tissue printing. of multicell-laden scaffolds containing bone morphogenic
J Funct Biomater. 2011;2(3):119-154. protein-4 for promoting M2 macrophage polarization and
doi: 10.3390/jfb2030119 accelerating bone defect repair in diabetes mellitus. Bioact
24. Murphy SV, Atala A. 3D bioprinting of tissues and organs. Mater. 2021;6(3):757-769.
Nat Biotechnol. 2014;32(8):773-785. doi: 10.1016/j.bioactmat.2020.08.030
doi: 10.1038/nbt.2958 36. Yi S, Liu Q, Luo Z, et al. Micropore-forming gelatin
25. Liu Y, Chan-Park MB. A biomimetic hydrogel based on methacryloyl (GelMA) bioink toolbox 2.0: designable
methacrylated dextran-graft-lysine and gelatin for 3D smooth tunability and adaptability for 3D bioprinting applications.
muscle cell culture. Biomaterials. 2010;31(6):1158-1170. Small. 2022;18(25):e2106357.
doi: 10.1016/j.biomaterials.2009.10.040 doi: 10.1002/smll.202106357
26. Jeong HJ, Nam H, Jang J, Lee SJ. 3D Bioprinting strategies 37. Billiet T, Gevaert E, De Schryver T, Cornelissen M, Dubruel
for the regeneration of functional tubular tissues and organs. P. The 3D printing of gelatin methacrylamide cell-laden
Bioengineering (Basel). 2020;7(2):32. tissue-engineered constructs with high cell viability.
doi: 10.3390/bioengineering7020032 Biomaterials. 2014;35(1):49-62.
doi: 10.1016/j.biomaterials.2013.09.078
27. Xu T, Zhao W, Zhu J-M, Albanna MZ, Yoo JJ, Atala A.
Complex heterogeneous tissue constructs containing 38. Hospodiuk M, Dey M, Sosnoski D, Ozbolat IT. The bioink: a
multiple cell types prepared by inkjet printing technology. comprehensive review on bioprintable materials. Biotechnol
Biomaterials. 2013;34(1):130-139. Adv. 2017;35(2):217-239.
doi: 10.1016/j.biomaterials.2012.09.035 doi: 10.1016/j.biotechadv.2016.12.006
28. Li J, Mooney DJ. Designing hydrogels for controlled drug 39. Gopinathan J, Noh I. Recent trends in bioinks for 3D
delivery. Nat Rev Mater. 2016;1(12):16071. printing. Biomater Res. 2018/04/06 2018;22(1):11.
doi: 10.1038/natrevmats.2016.71 doi: 10.1186/s40824-018-0122-1
29. Gao J, Li M, Cheng J, et al. 3D-printed GelMA/PEGDA/ 40. Jammalamadaka U, Tappa K. Recent advances in
F127DA scaffolds for bone regeneration. J Funct Biomater. biomaterials for 3D printing and tissue engineering. J Funct
2023;14(2):96. Biomater. 2018;9(1):22.
doi: 10.3390/jfb14020096 doi: 10.3390/jfb9010022
30. Gao J, Wang H, Li M, et al. DLP-printed GelMA-PMAA 41. Huh J, Moon YW, Park J, Atala A, Yoo JJ, Lee SJ. Combinations
scaffold for bone regeneration through endochondral of photoinitiator and UV absorber for cell-based digital light
ossification. Int J Bioprint. 2023;9(5):754. processing (DLP) bioprinting. Biofabrication. 2021;13(3):
doi: 10.18063/ijb.754 034103.
doi: 10.1088/1758-5090/abfd7a
31. Shi H, Li Y, Xu K, Yin J. Advantages of photo-curable collagen-
based cell-laden bioinks compared to methacrylated gelatin 42. Peng X, Liu X, Yang Y, et al. Graphene oxide functionalized
(GelMA) in digital light processing (DLP) and extrusion gelatin methacryloyl microgel for enhanced biomimetic
bioprinting. Mater Today Bio. 2023;23:100799. mineralization and in situ bone repair. Int J Nanomedicine.
doi: 10.1016/j.mtbio.2023.100799 2023;18:6725-6741.
doi: 10.2147/ijn.S433624
32. Kurian AG, Singh RK, Patel KD, Lee JH, Kim HW.
Multifunctional GelMA platforms with nanomaterials 43. Dinescu S, Ionita M, Ignat SR, Costache M, Hermenean A.
for advanced tissue therapeutics. Bioact Mater. 2022;8: Graphene oxide enhances chitosan-based 3D scaffold properties
267-295. for bone tissue engineering. Int J Mol Sci. 2019;20(20):5077.
doi: 10.1016/j.bioactmat.2021.06.027 doi: 10.3390/ijms20205077
33. Li J, Moeinzadeh S, Kim C, et al. Development and systematic 44. Li J, Liu X, Crook JM, Wallace GG. Development of 3D
characterization of GelMA/alginate/PEGDMA/xanthan printable graphene oxide based bio-ink for cell support and
gum hydrogel bioink system for extrusion bioprinting. tissue engineering. Front Bioeng Biotechnol. 2022;10:994776.
Biomaterials. 2023;293:121969. doi: 10.3389/fbioe.2022.994776
doi: 10.1016/j.biomaterials.2022.121969
45. Wang C, Mallela J, Garapati US, et al. A chitosan-modified
34. Pérez-Cortez JE, Sánchez-Rodríguez VH, Gallegos- graphene nanogel for noninvasive controlled drug release.
Martínez S, et al. Low-cost light-based GelMA 3D Nanomed Nanotechnol Biol Med. 2013;9(7):903-911.
bioprinting via retrofitting: manufacturability test and doi: 10.1016/j.nano.2013.01.003
Volume 10 Issue 6 (2024) 492 doi: 10.36922/ijb.4015

