Page 503 - IJB-10-6
P. 503

International Journal of Bioprinting                                 Nanomaterial-bioinks for DLP bioprinting




            89.  Montelongo SA, Chiou G, Ong JL, Bizios R, Guda T.   100. Ma H,  Feng  C, Chang J,  Wu C.  3D-printed bioceramic
               Development of bioinks for 3D printing microporous,   scaffolds:  from bone tissue  engineering to tumor  therapy.
               sintered calcium phosphate scaffolds. J Mater Sci Mater Med.   Acta Biomaterialia. 2018;79:37-59.
               2021;32(8):94.                                     doi: 10.1016/j.actbio.2018.08.026
               doi: 10.1007/s10856-021-06569-9
                                                               101. Wu M, Zou L, Jiang L, Zhao Z, Liu J. Osteoinductive and
            90.  Fischetti T, Borciani G, Avnet S, et al. Incorporation/  antimicrobial mechanisms of graphene-based materials for
               enrichment of  3D  bioprinted  constructs  by biomimetic   enhancing bone tissue engineering. J Tissue Eng Regen Med.
               nanoparticles: tuning printability and cell behavior in bone   2021;15(11):915-935.
               models. Nanomaterials (Basel). 2023;13(14):2040.     doi: 10.1002/term.3239
               doi: 10.3390/nano13142040
                                                               102. Shin SR, Li YC, Jang HL, et al. Graphene-based materials
            91.  Raghav PK, Mann Z, Ahlawat S, Mohanty S. Mesenchymal   for tissue engineering.  Adv  Drug Deliv Rev. 2016;
               stem cell-based nanoparticles and scaffolds in regenerative   105(Pt B):255-274.
               medicine. Eur J Pharmacol. 2022;918:174657.        doi: 10.1016/j.addr.2016.03.007
               doi: 10.1016/j.ejphar.2021.174657
                                                               103. Farshid B, Lalwani G, Mohammadi MS, et al. Two-
            92.  Cernencu AI, Vlasceanu GM, Serafim A, Pircalabioru   dimensional  graphene  oxide-reinforced  porous
               G, Ionita M. 3D double-reinforced graphene oxide –
               nanocellulose biomaterial inks for tissue engineered   biodegradable polymeric nanocomposites for bone tissue
               constructs. RSC Adv. 2023;13(34):24053-24063.      engineering. J Biomed Mater Res A. 2019;107(6):1143-1153.
               doi: 10.1039/D3RA02786D                            doi: 10.1002/jbm.a.36606
            93.  Steward AJ, Kelly DJ. Mechanical regulation of mesenchymal   104. Catoira MC, Fusaro L, Di Francesco D, Ramella M,
               stem cell differentiation. J Anat. 2015;227(6):717-731.  Boccafoschi  F. Overview  of  natural  hydrogels for
               doi: 10.1111/joa.12243                             regenerative medicine applications. J Mater Sci Mater Med.
                                                                  2019;30(10):115.
            94.  Phinney DG. Functional heterogeneity of mesenchymal      doi: 10.1007/s10856-019-6318-7
               stem cells: implications for cell therapy.  J Cell Biochem.
               2012;113(9):2806-2812.                          105. Zhou L, Tan G, Tan Y, Wang H, Liao J, Ning C. Biomimetic
               doi: 10.1002/jcb.24166                             mineralization of anionic gelatin hydrogels: Effect of degree
                                                                  of methacrylation. RSC Adv. 2014;4:21997.
            95.  Costa LA, Eiro N, Fraile M, et al. Functional heterogeneity      doi: 10.1039/c4ra02271h
               of mesenchymal stem cells from natural niches to culture
               conditions: implications for further clinical uses. Cell Mol   106. Castillo Diaz LA, Saiani A, Gough JE, Miller AF.
               Life Sci. 2021;78(2):447-467.                      Human osteoblasts within soft peptide hydrogels
               doi: 10.1007/s00018-020-03600-0                    promote mineralisation in vitro.  J Tissue Eng.
                                                                  2014;5:2041731414539344.
            96.  Talukdar Y, Rashkow J, Lalwani G, Kanakia S, Sitharaman
               B. The effects of graphene nanostructures on mesenchymal      doi: 10.1177/2041731414539344
               stem cells. Biomaterials. 2014;35(18):4863-4877.  107. Gerhardt LC, Boccaccini AR. Bioactive glass and glass-
               doi: 10.1016/j.biomaterials.2014.02.054            ceramic scaffolds for bone tissue engineering.  Materials.
            97.  Golub EE, Boesze-Battaglia K. The role of alkaline phosphatase   2010;3(7):3867-3910.
               in mineralization. Curr Opin Orthopaed. 2007;18(5):444-448.  doi:  10.3390/ma3073867
               doi: 10.1097/BCO.0b013e3282630851               108. Morgan EF, Unnikrisnan GU, Hussein AI. Bone mechanical
            98.  Sharma U, Pal D, Prasad R. Alkaline phosphatase: an   properties in healthy and diseased states. Annu Rev Biomed
               overview. Indian J Clin Biochem. 2014;29(3):269-278.  Eng. 2018;20(2018):119-143.
               doi: 10.1007/s12291-013-0408-y                     doi: 10.1146/annurev-bioeng-062117-121139
            99.  Rutkovskiy A, Stensløkken KO, Vaage IJ. Osteoblast   109. Diaz-Rodriguez P, Sánchez M, Landin M. Drug-loaded
               differentiation at a glance.  Med Sci Monit Basic Res.   biomimetic ceramics for tissue engineering. Pharmaceutics.
               2016;22:95-106.                                    2018;10(4):272.
               doi: 10.12659/msmbr.901142                         doi:  10.3390/pharmaceutics10040272













            Volume 10 Issue 6 (2024)                       495                                doi: 10.36922/ijb.4015
   498   499   500   501   502   503   504   505   506   507   508