Page 502 - IJB-10-6
P. 502

International Journal of Bioprinting                                 Nanomaterial-bioinks for DLP bioprinting




               of mesenchymal stem cells and outgrowth endothelial cells.   78.  Xia P, Luo Y. Vascularization in tissue engineering: the
               Tissue Eng A. 2011;17(17–18):2199-2212.            architecture cues of pores in scaffolds. J Biomed Mater Res B
               doi:  10.1089/ten.TEA.2010.0474                    Appl Biomater. 2022;110(5):1206-1214.
                                                                  doi: 10.1002/jbm.b.34979
            68.  Fuchs S, Hermanns MI, Kirkpatrick CJ. Retention of
               a differentiated endothelial phenotype by outgrowth   79.  Abdollahiyan P, Oroojalian F, Mokhtarzadeh A, de la Guardia
               endothelial cells isolated from human peripheral blood   M. Hydrogel-Based 3D Bioprinting for bone and cartilage
               and expanded in long-term cultures.  Cell  Tissue  Res.   tissue engineering. Biotechnol J. 2020;15(12):e2000095.
               2006;326:79-92.                                    doi: 10.1002/biot.202000095
               doi: 10.1007/s00441-006-0222-4
                                                               80.  de Leeuw AM, Graf R, Lim PJ, et al.  Physiological cell
            69.  Yue K, Trujillo-de Santiago G, Alvarez MM, Tamayol A,   bioprinting density in human bone-derived cell-laden
               Annabi N, Khademhosseini A. Synthesis, properties, and   scaffolds enhances matrix mineralization rate and stiffness
               biomedical applications of gelatin methacryloyl (GelMA)   under dynamic loading. Original research.  Front Bioeng
               hydrogels. Biomaterials. 2015;73:254-271.          Biotechnol. 2024;12:1310289.
               doi: 10.1016/j.biomaterials.2015.08.045            doi: 10.3389/fbioe.2024.1310289
            70.  Fedorov A, Beichel R, Kalpathy-Cramer J, et al. 3D slicer as   81.  Dhawan A, Kennedy PM, Rizk EB, Ozbolat IT. Three-
               an image computing platform for the quantitative imaging   dimensional bioprinting for bone and cartilage restoration
               network. Magn Reson Imaging. 2012;30(9):1323-1341.  in orthopaedic surgery.  J  Am  Acad  Orthop  Surg.
               doi: 10.1016/j.mri.2012.05.001                     2019;27(5):e215-e226.
                                                                  doi: 10.5435/jaaos-d-17-00632
            71.  Cignoni P, Callieri M, Corsini M, Dellepiane M, Ganovelli
               F, Ranzuglia G. MeshLab: an Open-Source Mesh Processing   82.  Midha S, Dalela M, Sybil D, Patra P, Mohanty S. Advances
               Tool. The Eurographics Association. 2008; 129-136.  in three-dimensional bioprinting of bone: progress and
               d oi :   1 0 . 2 3 1 2 / L o c a l C h ap t e r Ev e nt s / It a l C h ap /  challenges. J Tissue Eng Regen Med. 2019;13(6):925-945.
               ItalianChapConf2008/129-136                        doi: 10.1002/term.2847
            72.  Choi  CE, Chakraborty  A, Adzija H,  et al. Metal  organic   83.  Zhang J, Eyisoylu H, Qin X-H, Rubert M, Müller R. 3D
               framework-incorporated three-dimensional (3D) bio-  bioprinting of graphene oxide-incorporated cell-laden
               printable hydrogels to facilitate bone repair: preparation and   bone mimicking scaffolds for promoting scaffold fidelity,
               in vitro bioactivity analysis. Gels. 2023;9(12):923.  osteogenic differentiation and mineralization.  Acta
               doi: 10.3390/gels9120923                           Biomaterialia. 2021;121:637-652.
                                                                  doi: 10.1016/j.actbio.2020.12.026
            73.  Hildebrand T, Laib A, Müller R, Dequeker J, Rüegsegger P.
               Direct three-dimensional morphometric analysis of human   84.  Chen YC, Lin RZ, Qi H, et al. Functional human vascular
               cancellous bone: microstructural data from spine, femur, iliac   network generated in photocrosslinkable gelatin methacrylate
               crest, and calcaneus. J Bone Miner Res. 1999;14(7):1167-1174.  hydrogels. Adv Funct Mater. 2012;22(10):2027-2039.
               doi: 10.1359/jbmr.1999.14.7.1167                   doi: 10.1002/adfm.201101662
            74.  Doktor T, Valach J, Kytyr D, Jiroušek O. Pore Size Distribution   85.  Tigner TJ, Rajput S, Gaharwar AK, Alge DL. Comparison
               of Human  Trabecular Bone  – Comparison of  Intrusion   of photo cross linkable gelatin derivatives and
               Measurements with Image Analysis. 2011:115-118.    initiators for three-dimensional extrusion bioprinting.
                                                                  Biomacromolecules. 2020;21(2):454-463.
            75.  Lim TC, Chian KS, Leong KF. Cryogenic prototyping of
               chitosan scaffolds with controlled micro and macro architecture      doi: 10.1021/acs.biomac.9b01204
               and their effect on in vivo neo-vascularization and cellular   86.  Im G-B, Lin R-Z. Bioengineering for vascularization: trends
               infiltration. J Biomed Mater Res A. 2010;94A(4):1303-1311.  and directions of photocrosslinkable gelatin methacrylate
               doi: 10.1002/jbm.a.32747                           hydrogels. Review.  Front Bioeng Biotechnol. 2022;10:
                                                                  1053491.
            76.  Zhou K, Yu P, Shi X, et al. Hierarchically porous
               hydroxyapatite hybrid scaffold incorporated with reduced      doi: 10.3389/fbioe.2022.1053491
               graphene oxide for rapid bone ingrowth and repair.  ACS   87.  Ahmed J, Mulla M, Maniruzzaman M. Rheological and
               Nano. 2019;13(8):9595-9606.                        dielectric behavior of 3D-printable chitosan/graphene oxide
               doi: 10.1021/acsnano.9b04723                       hydrogels. ACS Biomater Sci Eng. 2020;6(1):88-99.
                                                                  doi: 10.1021/acsbiomaterials.9b00201
            77.  Taniguchi N, Fujibayashi S, Takemoto M, et al. Effect of
               pore size on bone ingrowth into porous titanium implants   88.  Kim J, Raja N, Choi YJ, et al. Enhancement of properties
               fabricated by additive manufacturing: an in vivo experiment.   of  a  cell-laden  GelMA  hydrogel-based  bioink  via  calcium
               Mater Sci Eng C. 2016;59:690-701.                  phosphate phase transition. Biofabrication. 2023;16(1):ad05e2.
               doi: 10.1016/j.msec.2015.10.069                    doi: 10.1088/1758-5090/ad05e2





            Volume 10 Issue 6 (2024)                       494                                doi: 10.36922/ijb.4015
   497   498   499   500   501   502   503   504   505   506   507