Page 502 - IJB-10-6
P. 502
International Journal of Bioprinting Nanomaterial-bioinks for DLP bioprinting
of mesenchymal stem cells and outgrowth endothelial cells. 78. Xia P, Luo Y. Vascularization in tissue engineering: the
Tissue Eng A. 2011;17(17–18):2199-2212. architecture cues of pores in scaffolds. J Biomed Mater Res B
doi: 10.1089/ten.TEA.2010.0474 Appl Biomater. 2022;110(5):1206-1214.
doi: 10.1002/jbm.b.34979
68. Fuchs S, Hermanns MI, Kirkpatrick CJ. Retention of
a differentiated endothelial phenotype by outgrowth 79. Abdollahiyan P, Oroojalian F, Mokhtarzadeh A, de la Guardia
endothelial cells isolated from human peripheral blood M. Hydrogel-Based 3D Bioprinting for bone and cartilage
and expanded in long-term cultures. Cell Tissue Res. tissue engineering. Biotechnol J. 2020;15(12):e2000095.
2006;326:79-92. doi: 10.1002/biot.202000095
doi: 10.1007/s00441-006-0222-4
80. de Leeuw AM, Graf R, Lim PJ, et al. Physiological cell
69. Yue K, Trujillo-de Santiago G, Alvarez MM, Tamayol A, bioprinting density in human bone-derived cell-laden
Annabi N, Khademhosseini A. Synthesis, properties, and scaffolds enhances matrix mineralization rate and stiffness
biomedical applications of gelatin methacryloyl (GelMA) under dynamic loading. Original research. Front Bioeng
hydrogels. Biomaterials. 2015;73:254-271. Biotechnol. 2024;12:1310289.
doi: 10.1016/j.biomaterials.2015.08.045 doi: 10.3389/fbioe.2024.1310289
70. Fedorov A, Beichel R, Kalpathy-Cramer J, et al. 3D slicer as 81. Dhawan A, Kennedy PM, Rizk EB, Ozbolat IT. Three-
an image computing platform for the quantitative imaging dimensional bioprinting for bone and cartilage restoration
network. Magn Reson Imaging. 2012;30(9):1323-1341. in orthopaedic surgery. J Am Acad Orthop Surg.
doi: 10.1016/j.mri.2012.05.001 2019;27(5):e215-e226.
doi: 10.5435/jaaos-d-17-00632
71. Cignoni P, Callieri M, Corsini M, Dellepiane M, Ganovelli
F, Ranzuglia G. MeshLab: an Open-Source Mesh Processing 82. Midha S, Dalela M, Sybil D, Patra P, Mohanty S. Advances
Tool. The Eurographics Association. 2008; 129-136. in three-dimensional bioprinting of bone: progress and
d oi : 1 0 . 2 3 1 2 / L o c a l C h ap t e r Ev e nt s / It a l C h ap / challenges. J Tissue Eng Regen Med. 2019;13(6):925-945.
ItalianChapConf2008/129-136 doi: 10.1002/term.2847
72. Choi CE, Chakraborty A, Adzija H, et al. Metal organic 83. Zhang J, Eyisoylu H, Qin X-H, Rubert M, Müller R. 3D
framework-incorporated three-dimensional (3D) bio- bioprinting of graphene oxide-incorporated cell-laden
printable hydrogels to facilitate bone repair: preparation and bone mimicking scaffolds for promoting scaffold fidelity,
in vitro bioactivity analysis. Gels. 2023;9(12):923. osteogenic differentiation and mineralization. Acta
doi: 10.3390/gels9120923 Biomaterialia. 2021;121:637-652.
doi: 10.1016/j.actbio.2020.12.026
73. Hildebrand T, Laib A, Müller R, Dequeker J, Rüegsegger P.
Direct three-dimensional morphometric analysis of human 84. Chen YC, Lin RZ, Qi H, et al. Functional human vascular
cancellous bone: microstructural data from spine, femur, iliac network generated in photocrosslinkable gelatin methacrylate
crest, and calcaneus. J Bone Miner Res. 1999;14(7):1167-1174. hydrogels. Adv Funct Mater. 2012;22(10):2027-2039.
doi: 10.1359/jbmr.1999.14.7.1167 doi: 10.1002/adfm.201101662
74. Doktor T, Valach J, Kytyr D, Jiroušek O. Pore Size Distribution 85. Tigner TJ, Rajput S, Gaharwar AK, Alge DL. Comparison
of Human Trabecular Bone – Comparison of Intrusion of photo cross linkable gelatin derivatives and
Measurements with Image Analysis. 2011:115-118. initiators for three-dimensional extrusion bioprinting.
Biomacromolecules. 2020;21(2):454-463.
75. Lim TC, Chian KS, Leong KF. Cryogenic prototyping of
chitosan scaffolds with controlled micro and macro architecture doi: 10.1021/acs.biomac.9b01204
and their effect on in vivo neo-vascularization and cellular 86. Im G-B, Lin R-Z. Bioengineering for vascularization: trends
infiltration. J Biomed Mater Res A. 2010;94A(4):1303-1311. and directions of photocrosslinkable gelatin methacrylate
doi: 10.1002/jbm.a.32747 hydrogels. Review. Front Bioeng Biotechnol. 2022;10:
1053491.
76. Zhou K, Yu P, Shi X, et al. Hierarchically porous
hydroxyapatite hybrid scaffold incorporated with reduced doi: 10.3389/fbioe.2022.1053491
graphene oxide for rapid bone ingrowth and repair. ACS 87. Ahmed J, Mulla M, Maniruzzaman M. Rheological and
Nano. 2019;13(8):9595-9606. dielectric behavior of 3D-printable chitosan/graphene oxide
doi: 10.1021/acsnano.9b04723 hydrogels. ACS Biomater Sci Eng. 2020;6(1):88-99.
doi: 10.1021/acsbiomaterials.9b00201
77. Taniguchi N, Fujibayashi S, Takemoto M, et al. Effect of
pore size on bone ingrowth into porous titanium implants 88. Kim J, Raja N, Choi YJ, et al. Enhancement of properties
fabricated by additive manufacturing: an in vivo experiment. of a cell-laden GelMA hydrogel-based bioink via calcium
Mater Sci Eng C. 2016;59:690-701. phosphate phase transition. Biofabrication. 2023;16(1):ad05e2.
doi: 10.1016/j.msec.2015.10.069 doi: 10.1088/1758-5090/ad05e2
Volume 10 Issue 6 (2024) 494 doi: 10.36922/ijb.4015

