Page 570 - IJB-10-6
P. 570
International Journal of Bioprinting Internally-crosslinked ADA/Alg/Gel bioinks
to support AHCF and H9C2 viability. In conclusion, 2. Ramiah P, du Toit LC, Choonara YE, Kondiah PPD, Pillay
this work provides valuable insights toward overcoming V. Hydrogel-based bioinks for 3D bioprinting in tissue
the limitations associated with traditional Alg-based regeneration. Front Mater. 2020;7:506968.
hydrogel bioinks. doi: 10.3389/FMATS.2020.00076/BIBTEX
3. Taneja H, Salodkar SM, Singh Parmar A, Chaudhary S.
Acknowledgments Hydrogel based 3D printing: bio ink for tissue engineering.
J Mol Liq. 2022;367:120390.
Not applicable. doi: 10.1016/J.MOLLIQ.2022.120390
Funding 4. Wissing TB, Bonito V, Bouten CVC, Smits AIPM. Biomaterial-
driven in situ cardiovascular tissue engineering—a multi-
This work was supported by the European Research disciplinary perspective. NPJ Regen Med. 2017;2(1):1-20.
Council (ERC) under the European Union’s Horizon 2020 doi: 10.1038/s41536-017-0023-2
research and innovation program (BIORECAR, grant 5. Mei X, Cheng K. Recent development in therapeutic cardiac
agreement number 772168). patches. Front Cardiovasc Med. 2020;7:610364.
doi: 10.3389/fcvm.2020.610364
Conflict of interest 6. Testore D, Zoso A, Kortaberria G, Sangermano M, Chiono
Elena Marcello serves as the Editorial Board Member V. Electroconductive photo-curable PEGDA-Gelatin/
of the journal, but was not in any way involved in the PEDOT: PSS hydrogels for prospective cardiac tissue
editorial and peer-review process conducted for this paper, engineering application. Front Bioeng Biotechnol. 2022;
directly or indirectly. Other authors declare they have no 10:897575.
doi: 10.3389/fbioe.2022.897575
competing interests.
7. Neuhaus W, Reininger-Gutmann B, Rinner B, et al. The rise
Author contributions of three rs centres and platforms in Europe*. Altern Lab
Anim. 2022;50(2):90-120.
Conceptualization: Elena Marcello, Valeria Chiono doi: 10.1177/02611929221099165
Funding acquisition: Valeria Chiono 8. Panwar A, Tan LP. Current status of bioinks for micro-
Investigation: Giovanni Paolo Stola, Camilla Paoletti, extrusion-based 3D bioprinting. Molecules. 2016;21(6):685.
Letizia Nicoletti, Elena Marcello, Geo Paul, Claudio doi: 10.3390/molecules21060685
Cassino, Leonardo Marchese
Writing – original draft: Elena Marcello, Giovanni Paolo 9. He Y, Yang F, Zhao H, Gao Q, Xia B, Fu J. Research on
the printability of hydrogels in 3D bioprinting. Sci Rep.
Stola, Camilla Paoletti 2016;6(1):1-13.
Writing – review & editing: Elena Marcello, Valeria Chiono doi: 10.1038/srep29977
Ethics approval and consent to participate 10. Sun J, Tan H. Alginate-based biomaterials for regenerative
medicine applications. Materials. 2013;6(4):1285-1309.
Not applicable. doi: 10.3390/ma6041285
11. Lee KY, Mooney DJ. Alginate: properties and biomedical
Consent for publication applications. Prog Polym Sci (Oxford). 2012;37(1):106-126.
Not applicable. doi: 10.1016/j.progpolymsci.2011.06.003
12. Lee RJ, Hinson A, Bauernschmitt R, et al. The feasibility
Availability of data and safety of Algisyl-LVR as a method of left ventricular
TM
augmentation in patients with dilated cardiomyopathy: initial
Data are available from the corresponding author upon first in man clinical results. Int J Cardiol. 2015;199:18-24.
reasonable request. doi: 10.1016/j.ijcard.2015.06.111
References 13. Ruvinov E, Cohen S. Alginate biomaterial for the treatment
of myocardial infarction: progress, translational strategies,
1. Fatimi A, Okoro OV, Podstawczyk D, Siminska-Stanny and clinical outlook. From ocean algae to patient bedside.
J, Shavandi A. Natural hydrogel-based bio-inks for Adv Drug Deliv Rev. 2016;96:54-76.
3D bioprinting in tissue engineering: a review. Gels. doi: 10.1016/j.addr.2015.04.021
2022;8(3):179. 14. Choy JS, Leng S, Acevedo-Bolton G, et al. Efficacy
doi: 10.3390/gels8030179 of intramyocardial injection of Algisyl-LVR for the
Volume 10 Issue 6 (2024) 562 doi: 10.36922/ijb.4014

