Page 571 - IJB-10-6
P. 571

International Journal of Bioprinting                               Internally-crosslinked ADA/Alg/Gel bioinks




               treatment of ischemic heart failure in swine. Int J Cardiol.   26.  Lee A, Hudson AR, Shiwarski DJ, et al. 3D bioprinting of
               2018;255:129-135.                                  collagen to rebuild components of the human heart. Science.
               doi: 10.1016/j.ijcard.2017.09.179                  2019;365(6452):482-487.
                                                                  http://science.sciencemag.org/.
            15.  Cao L, Lu W, Mata A, Nishinari K, Fang Y. Egg-box model-
               based gelation of alginate and pectin: a review. Carbohydr   27.  Remaggi G, Catanzano O, Quaglia F, Elviri L. Alginate self‐
               Polym. 2020;242:116389.                            crosslinking ink for 3D extrusion‐based cryoprinting and
               doi: 10.1016/j.carbpol.2020.116389                 application for epirubicin‐HCl delivery on MCF‐7 cells.
                                                                  Molecules. 2022;27(3):882.
            16.  Hu C, Lu W, Mata A, Nishinari K, Fang Y. Ions-induced
               gelation of alginate: mechanisms and applications. Int J Biol      doi: 10.3390/molecules27030882
               Macromol. 2021;177:578-588.                     28.  Sardelli L, Tunesi M, Briatico-Vangosa F, Petrini P.
               doi: 10.1016/j.ijbiomac.2021.02.086                3D-reactive printing of engineered alginate inks. Soft Matter.
                                                                  2021;17(35):8105-8117.
            17.  Paques JP. Alginate nanospheres prepared by internal or
               external gelation with nanoparticles. In: Microencapsulation      doi: 10.1039/d1sm00604e
               and Microspheres for Food Applications. Cambridge, USA:   29.  Kim E, Seok JM, Bae SB, Park SA, Park WH. Silk fibroin
               Academic Press; 2015:39-55.                        enhances cytocompatibilty and dimensional stability
               doi: 10.1016/B978-0-12-800350-3.00004-2            of alginate hydrogels for light-based three-dimensional
                                                                  bioprinting. Biomacromolecules. 2021;22(5):1921-1931.
            18.  Chan  LW,  Lee  HY,  Heng  PWS.  Mechanisms  of  external
               and internal gelation and their impact on the functions of      doi: 10.1021/acs.biomac.1c00034
               alginate as a coat and delivery system.  Carbohydr Polym.   30.  Falcone G, Mazzei P, Piccolo A, et al. Advanced printable
               2006;63(2):176-187.                                hydrogels from pre-crosslinked alginate as a new tool in
               doi: 10.1016/j.carbpol.2005.07.033                 semi solid extrusion 3D printing process. Carbohydr Polym.
                                                                  2022;276:118746.
            19.  Hinton TJ, Jallerat Q, Palchesko RN, et al. Three-dimensional
               printing of complex biological structures by freeform      doi: 10.1016/j.carbpol.2021.118746
               reversible embedding of suspended hydrogels.  Sci Adv.   31.  Guagliano G, Volpini C, Camilletti J, et al. Internally
               2015;1(9):e1500758.                                crosslinked alginate-based bioinks  for the fabrication of  in
               doi: 10.1126/sciadv.1500758                        vitro hepatic tissue models. Biofabrication. 2023;15(3):035018.
                                                                  doi: 10.1088/1758-5090/acd872
            20.  Mirdamadi E, Tashman JW, Shiwarski DJ, Palchesko RN,
               Feinberg AW. FRESH 3D bioprinting a full-size model of the   32.  Guagliano G, Volpini C, Sardelli L, et al. Hep3Gel: a shape-
               human heart. ACS Biomater Sci Eng. 2020;6(11):6453-6459.  shifting extracellular matrix-based, three-dimensional liver
               doi: 10.1021/acsbiomaterials.0c01133               model adaptable to different culture systems. ACS Biomater
                                                                  Sci Eng. 2023;9(1):211-229.
            21.  Mirdamadi E, Muselimyan N, Koti P, Asfour H, Sarvazyan
               N. Agarose slurry as a support medium for bioprinting and      doi: 10.1021/ACSBIOMATERIALS.2C01226
               culturing freestanding cell-laden hydrogel constructs.  3D   33.  Guagliano G, Volpini C, Sardelli L, Briatico Vangosa F,
               Print Addit Manuf. 2019;6(3):158-164.              Visai L, Petrini P. Bioinspired bioinks for the fabrication of
               doi: 10.1089/3dp.2018.0175                         chemomechanically relevant standalone disease models of
                                                                  hepatic steatosis. Adv Healthc Mater. 2024;13(14):e2303349.
            22.  Hazur J, Detsch R, Karakaya E, et al. Improving alginate
               printability for biofabrication: establishment of a      doi: 10.1002/ADHM.202303349
               universal and homogeneous pre-crosslinking technique.   34.  Bouhadir KH, Lee KY, Alsberg E, Damm KL, Anderson KW,
               Biofabrication. 2020;12(4):045004.                 Mooney DJ. Degradation of partially oxidized alginate and
               doi: 10.1088/1758-5090/ab98e5                      its  potential application  for tissue  engineering.  Biotechnol
                                                                  Prog. 2001;17(5):945-950.
            23.  Girón-Hernández J, Gentile P, Benlloch-Tinoco M. Impact
               of heterogeneously crosslinked calcium alginate networks      doi: 10.1021/bp010070p
               on the encapsulation of β-carotene-loaded beads. Carbohydr   35.  Liberski A, Latif N, Raynaud C, Bollensdorff C, Yacoub M.
               Polym. 2021;271:118429.                            Alginate for cardiac regeneration: from seaweed to clinical
               doi: 10.1016/j.carbpol.2021.118429                 trials. Glob Cardiol Sci Pract. 2016;2016(1):e201604.
                                                                  doi: 10.21542/gcsp.2016.4
            24.  Baker BM, Chen CS. Deconstructing the third dimension-
               how 3D culture microenvironments alter cellular cues. J Cell   36.  Łabowska MB, Cierluk K, Jankowska AM, Kulbacka J,
               Sci. 2012;125(13):3015-3024.                       Detyna J, Michalak I. A review on the adaption of alginate-
               doi: 10.1242/jcs.079509                            gelatin hydrogels for 3D cultures and bioprinting. Materials.
                                                                  2021;14(4):1-28.
            25.  Marchioli G, Van Gurp L, Van Krieken PP, et al. Fabrication
               of three-dimensional bioplotted hydrogel scaffolds for islets      doi: 10.3390/ma14040858
               of Langerhans transplantation. Biofabrication. 2015;7(2).  37.  Cattelan G, Guerrero Gerbolés A, Foresti R, et al. Alginate
               doi: 10.1088/1758-5090/7/2/025009                  formulations: current developments in the race for hydrogel-

            Volume 10 Issue 6 (2024)                       563                                doi: 10.36922/ijb.4014
   566   567   568   569   570   571   572   573   574   575   576