Page 571 - IJB-10-6
P. 571
International Journal of Bioprinting Internally-crosslinked ADA/Alg/Gel bioinks
treatment of ischemic heart failure in swine. Int J Cardiol. 26. Lee A, Hudson AR, Shiwarski DJ, et al. 3D bioprinting of
2018;255:129-135. collagen to rebuild components of the human heart. Science.
doi: 10.1016/j.ijcard.2017.09.179 2019;365(6452):482-487.
http://science.sciencemag.org/.
15. Cao L, Lu W, Mata A, Nishinari K, Fang Y. Egg-box model-
based gelation of alginate and pectin: a review. Carbohydr 27. Remaggi G, Catanzano O, Quaglia F, Elviri L. Alginate self‐
Polym. 2020;242:116389. crosslinking ink for 3D extrusion‐based cryoprinting and
doi: 10.1016/j.carbpol.2020.116389 application for epirubicin‐HCl delivery on MCF‐7 cells.
Molecules. 2022;27(3):882.
16. Hu C, Lu W, Mata A, Nishinari K, Fang Y. Ions-induced
gelation of alginate: mechanisms and applications. Int J Biol doi: 10.3390/molecules27030882
Macromol. 2021;177:578-588. 28. Sardelli L, Tunesi M, Briatico-Vangosa F, Petrini P.
doi: 10.1016/j.ijbiomac.2021.02.086 3D-reactive printing of engineered alginate inks. Soft Matter.
2021;17(35):8105-8117.
17. Paques JP. Alginate nanospheres prepared by internal or
external gelation with nanoparticles. In: Microencapsulation doi: 10.1039/d1sm00604e
and Microspheres for Food Applications. Cambridge, USA: 29. Kim E, Seok JM, Bae SB, Park SA, Park WH. Silk fibroin
Academic Press; 2015:39-55. enhances cytocompatibilty and dimensional stability
doi: 10.1016/B978-0-12-800350-3.00004-2 of alginate hydrogels for light-based three-dimensional
bioprinting. Biomacromolecules. 2021;22(5):1921-1931.
18. Chan LW, Lee HY, Heng PWS. Mechanisms of external
and internal gelation and their impact on the functions of doi: 10.1021/acs.biomac.1c00034
alginate as a coat and delivery system. Carbohydr Polym. 30. Falcone G, Mazzei P, Piccolo A, et al. Advanced printable
2006;63(2):176-187. hydrogels from pre-crosslinked alginate as a new tool in
doi: 10.1016/j.carbpol.2005.07.033 semi solid extrusion 3D printing process. Carbohydr Polym.
2022;276:118746.
19. Hinton TJ, Jallerat Q, Palchesko RN, et al. Three-dimensional
printing of complex biological structures by freeform doi: 10.1016/j.carbpol.2021.118746
reversible embedding of suspended hydrogels. Sci Adv. 31. Guagliano G, Volpini C, Camilletti J, et al. Internally
2015;1(9):e1500758. crosslinked alginate-based bioinks for the fabrication of in
doi: 10.1126/sciadv.1500758 vitro hepatic tissue models. Biofabrication. 2023;15(3):035018.
doi: 10.1088/1758-5090/acd872
20. Mirdamadi E, Tashman JW, Shiwarski DJ, Palchesko RN,
Feinberg AW. FRESH 3D bioprinting a full-size model of the 32. Guagliano G, Volpini C, Sardelli L, et al. Hep3Gel: a shape-
human heart. ACS Biomater Sci Eng. 2020;6(11):6453-6459. shifting extracellular matrix-based, three-dimensional liver
doi: 10.1021/acsbiomaterials.0c01133 model adaptable to different culture systems. ACS Biomater
Sci Eng. 2023;9(1):211-229.
21. Mirdamadi E, Muselimyan N, Koti P, Asfour H, Sarvazyan
N. Agarose slurry as a support medium for bioprinting and doi: 10.1021/ACSBIOMATERIALS.2C01226
culturing freestanding cell-laden hydrogel constructs. 3D 33. Guagliano G, Volpini C, Sardelli L, Briatico Vangosa F,
Print Addit Manuf. 2019;6(3):158-164. Visai L, Petrini P. Bioinspired bioinks for the fabrication of
doi: 10.1089/3dp.2018.0175 chemomechanically relevant standalone disease models of
hepatic steatosis. Adv Healthc Mater. 2024;13(14):e2303349.
22. Hazur J, Detsch R, Karakaya E, et al. Improving alginate
printability for biofabrication: establishment of a doi: 10.1002/ADHM.202303349
universal and homogeneous pre-crosslinking technique. 34. Bouhadir KH, Lee KY, Alsberg E, Damm KL, Anderson KW,
Biofabrication. 2020;12(4):045004. Mooney DJ. Degradation of partially oxidized alginate and
doi: 10.1088/1758-5090/ab98e5 its potential application for tissue engineering. Biotechnol
Prog. 2001;17(5):945-950.
23. Girón-Hernández J, Gentile P, Benlloch-Tinoco M. Impact
of heterogeneously crosslinked calcium alginate networks doi: 10.1021/bp010070p
on the encapsulation of β-carotene-loaded beads. Carbohydr 35. Liberski A, Latif N, Raynaud C, Bollensdorff C, Yacoub M.
Polym. 2021;271:118429. Alginate for cardiac regeneration: from seaweed to clinical
doi: 10.1016/j.carbpol.2021.118429 trials. Glob Cardiol Sci Pract. 2016;2016(1):e201604.
doi: 10.21542/gcsp.2016.4
24. Baker BM, Chen CS. Deconstructing the third dimension-
how 3D culture microenvironments alter cellular cues. J Cell 36. Łabowska MB, Cierluk K, Jankowska AM, Kulbacka J,
Sci. 2012;125(13):3015-3024. Detyna J, Michalak I. A review on the adaption of alginate-
doi: 10.1242/jcs.079509 gelatin hydrogels for 3D cultures and bioprinting. Materials.
2021;14(4):1-28.
25. Marchioli G, Van Gurp L, Van Krieken PP, et al. Fabrication
of three-dimensional bioplotted hydrogel scaffolds for islets doi: 10.3390/ma14040858
of Langerhans transplantation. Biofabrication. 2015;7(2). 37. Cattelan G, Guerrero Gerbolés A, Foresti R, et al. Alginate
doi: 10.1088/1758-5090/7/2/025009 formulations: current developments in the race for hydrogel-
Volume 10 Issue 6 (2024) 563 doi: 10.36922/ijb.4014

