Page 573 - IJB-10-6
P. 573

International Journal of Bioprinting                               Internally-crosslinked ADA/Alg/Gel bioinks




            60.  Mccain  ML,  Lee  H,  Aratyn-Schaus  Y, Kléber  AG,  Parker   71.  Li Z, Huang S, Liu Y, et al. Tuning alginate-gelatin bioink
               KK. Cooperative coupling of cell-matrix and cell–cell   properties by varying solvent and their impact on stem cell
               adhesions in cardiac muscle.  Biophys Comput Biol.   behavior. Sci Rep. 2018;8(1):8020.
               2012;109(25):9881-9886.                            doi: 10.1038/s41598-018-26407-3
               doi: 10.1073/pnas.1203007109/-/DCSupplemental
                                                               72.  Mondal A, Gebeyehu A, Miranda M, et al. Author correction:
            61.  Deddens JC, Sadeghi AH, Hjortnaes J, et al. Modeling the   characterization and printability of sodium alginate -gelatin
               human scarred heart in vitro: toward new tissue engineered   hydrogel  for  bioprinting  NSCLC  co-culture.  Sci Rep.
               models. Adv Healthc Mater. 2017;6(3):1600571.      2020;10(1):1732.
               doi: 10.1002/adhm.201600571                        doi: 10.1038/s41598-020-58952-1
            62.  Maxwell CJ, Soltisz AM, Rich WW, Choi A, Reilly MA,   73.  Distler T, Mcdonald K, Heid S, Karakaya E, Detsch
               Swindle-Reilly KE. Tunable alginate hydrogels as injectable   R, Boccaccini AR. Ionically and enzymatically dual
               drug delivery vehicles for optic neuropathy. J Biomed Mater   cross-linked  oxidized  alginate  gelatin  hydrogels
               Res A. 2022;110(10):1621-1635.                     with tunable stiffness and degradation behavior for
               doi: 10.1002/jbm.a.37412                           tissue engineering.  ACS Biomater Sci Eng. 2020;6(7):
                                                                  3899-3914.
            63.  Park H, Lyons J, Ohtsubo T, Song CW. Acidic environment
               causes apoptosis by increasing caspase activity. Br J Cancer.      doi: 10.1021/acsbiomaterials.0c00677
               1999;80:1892-1897                               74.  Bider F, Miola M, Clejanu CE, et al. 3D bioprinting of
               doi: 10.1038/sj.bjc.6690617                        multifunctional alginate dialdehyde (ADA)–gelatin (GEL)
                                                                  (ADA-GEL) hydrogels incorporating ferulic acid. Int J Biol
            64.  Mirek A, Belaid H, Barranger F, et al. Development of a
               new 3D bioprinted antibiotic delivery system based on a   Macromol. 2024;257:128449.
               cross-linked gelatin-alginate hydrogel.  J Mater Chem B.      doi: 10.1016/j.ijbiomac.2023.128449
               2022;10(43):8862-8874.                          75.  Genç H, Hazur J, Karakaya E, et al. Differential responses
               doi: 10.1039/d2tb01268e                            to bioink-induced oxidative stress in endothelial cells and
                                                                  fibroblasts. Int J Mol Sci. 2021;22(5):2358.
            65.  Li Z, Liao Y, Li D, et al. Design and properties of alginate/
               gelatin/cellulose  nanocrystals  interpenetrating  polymer      doi: 10.3390/IJMS22052358
               network composite hydrogels based on in situ cross-linking.   76.  Wu Y, Yuan L, Sheng N, et al. A soft tissue adhesive based
               Eur Polym J. 2023;201:112556                       on aldehyde-sodium alginate and amino-carboxymethyl
               doi: 10.21203/rs.3.rs-2215053/v1                   chitosan  preparation  through  the  Schiff  reaction.  Front
                                                                  Mater Sci. 2017;11(3):215-222.
            66.  Saarai A, Kasparkova V, Sedlacek T, Saha P. On the
               development and characterisation of crosslinked sodium      doi: 10.1007/S11706-017-0392-X
               alginate/gelatine hydrogels.  J Mech Behav Biomed Mater.   77.  Emami Z, Ehsani M, Zandi M, Foudazi R. Controlling
               2013;18:152-166.                                   alginate  oxidation  conditions  for  making  alginate-
               doi: 10.1016/j.jmbbm.2012.11.010                   gelatin  hydrogels.  Carbohydr  Polym.  2018;198:
                                                                  509-517.
            67.  Hackenhaar CR, Rosa CF, Flores EEE, Santagapita PR, Klein
               MP, Hertz PF. Development of a biocomposite based on      doi: 10.1016/j.carbpol.2018.06.080
               alginate/gelatin crosslinked with genipin for β-galactosidase   78.  Dalheim M, Vanacker J, Najmi MA, Aachmann FL, Strand
               immobilization: performance and characteristics. Carbohydr   BL, Christensen BE. Efficient functionalization of alginate
               Polym. 2022;291:119483.                            biomaterials. Biomaterials. 2016;80:146-156.
               doi: 10.1016/j.carbpol.2022.119483                 doi: 10.1016/J.BIOMATERIALS.2015.11.043
            68.  Karakaya E, Schöbel L, Zhong Y, et al. How to determine a   79.  Boontheekul T, Kong HJ, Mooney DJ. Controlling
               suitable alginate for biofabrication approaches using an extensive   alginate gel degradation utilizing partial oxidation and
               alginate library? Biomacromolecules. 2023;24(7):2982-2997.  bimodal molecular weight distribution.  Biomaterials.
               doi: 10.1021/acs.biomac.2c01282                    2005;26:2455-2465.
                                                                  doi: 10.1016/j.biomaterials.2004.06.044
            69.  Zehnder T, Sarker B, Boccaccini AR, Detsch R. Evaluation
               of an alginate-gelatine crosslinked hydrogel for bioplotting.   80.  Cuomo F, Cofelice M, Lopez F. Rheological characterization
               Biofabrication. 2015;7(2):025001.                  of hydrogels from alginate-based nanodispersion. Polymers
               doi: 10.1088/1758-5090/7/2/025001                  (Basel). 2019;11(2):259.
                                                                  doi: 10.3390/polym11020259
            70.  Bociaga D, Bartniak M, Grabarczyk J, Przybyszewska K.
               Sodium alginate/gelatine hydrogels for direct bioprinting-  81.  Cooke ME, Rosenzweig DH. The rheology of direct
               the effect of composition selection and applied solvents on   and suspended extrusion bioprinting.  APL Bioeng.
               the bioink properties. Materials. 2019;12(7):2669.  2021;5(1):011502.
               doi: 10.3390/ma12172669                            doi: 10.1063/5.0031475


            Volume 10 Issue 6 (2024)                       565                                doi: 10.36922/ijb.4014
   568   569   570   571   572   573   574   575   576   577   578