Page 572 - IJB-10-6
P. 572

International Journal of Bioprinting                               Internally-crosslinked ADA/Alg/Gel bioinks




               based cardiac regeneration.  Front Bioeng Biotechnol.   48.  Wang Q, Backman O, Nuopponen M, Xu C, Wang X.
               2020;8:414.                                        Rheological and printability assessments on biomaterial
               doi: 10.3389/fbioe.2020.00414                      inks of nanocellulose/photo-crosslinkable biopolymer in
                                                                  light-aided 3D printing. Front Chem Eng. 2021;3:723429.
            38.  Roche CD, Lin H, Huang Y, et al. 3D bioprinted alginate-
               gelatin hydrogel patches containing cardiac spheroids      doi: 10.3389/fceng.2021.723429
               recover heart function in a mouse model of myocardial   49.  Barceló X, Eichholz KF, Garcia O, Kelly DJ. Tuning the
               infarction. Bioprinting. 2023;30:e00263.           degradation rate of alginate-based bioinks for bioprinting
               doi: 10.1016/j.bprint.2023.e00263                  functional cartilage tissue. Biomedicines. 2022;10(7):1621.
                                                                  doi: 10.3390/biomedicines10071621
            39.  Sonaye SY, Ertugral EG, Kothapalli CR, Sikder P. Extrusion
               3D (Bio)printing of alginate-gelatin-based composite   50.  Reakasame  S,  Boccaccini  AR.  Oxidized  alginate-based
               scaffolds for skeletal muscle tissue engineering.  Materials.   hydrogels for tissue engineering applications: a review.
               2022;15(22):7945.                                  Biomacromolecules. 2018;19(1):3-21.
               doi: 10.3390/ma15227945                            doi: 10.1021/acs.biomac.7b01331
            40.  Heid S, Becker K, Byun J, et al. Bioprinting with bioactive   51.  Gomez CG, Rinaudo M, Villar MA. Oxidation of sodium
               alginate dialdehyde-gelatin (ADA-GEL) composite bioinks:   alginate and characterization of the oxidized derivatives.
               time-dependent in-situ crosslinking via addition of calcium-  Carbohydr Polym. 2007;67(3):296-304.
               silicate particles tunes  in vitro stability of 3D bioprinted      doi: 10.1016/J.CARBPOL.2006.05.025
               constructs. Bioprinting. 2022;26:e00200.        52.  Salomonsen T, Jensen HM, Larsen FH, Steuernagel S,
               doi: 10.1016/j.bprint.2022.e00200                  Engelsen SB. Direct quantification of M/G ratio from 13C
            41.  Sarker  B, Papageorgiou DG,  Silva R,  et al.  Fabrication of   CP-MAS NMR spectra of alginate powders by multivariate
               alginate-gelatin  crosslinked hydrogel  microcapsules  and   curve resolution. Carbohydr Res. 2009;344(15):2014-2022.
               evaluation of the microstructure and physico-chemical      doi: 10.1016/j.carres.2009.06.025
               properties. J Mater Chem B. 2014;2(11):1470-1482.  53.  Huamani-Palomino RG, Córdova BM, Elvis Renzo
               doi: 10.1039/c3tb21509a                            Pichilingue L, Venâncio T, Valderrama AC. Functionalization
            42.  Wang LL, Highley CB, Yeh YC, Galarraga JH, Uman S,   of an alginate-based  material  by  oxidation and reductive
               Burdick JA. Three-dimensional extrusion bioprinting   amination. Polymers (Basel). 2021;13(2):1-15.
               of single- and double-network hydrogels containing      doi: 10.3390/polym13020255
               dynamic covalent crosslinks.  J Biomed Mater Res A.   54.  Banks SR, Enck K, Wright M, Opara EC, Welker ME.
               2018;106(4):865-875.                               Chemical modification of alginate for controlled oral drug
               doi: 10.1002/jbm.a.36323                           delivery. J Agric Food Chem. 2019;67(37):10481-10488.
            43.  Neira-Velàzquez  MG,  Rodríguez-Hernández  MT,     doi: 10.1021/acs.jafc.9b01911
               Hernández-Hernández E, Ruiz-Martínez AR. Polymer   55.  Sarker B, Singh R, Silva R, et al. Evaluation of fibroblasts
               molecular weight measurement. Handbook of polymer   adhesion and proliferation on alginate-gelatin crosslinked
               synthesis, characterization, and processing. 2013;355-366.  hydrogel. PLoS One. 2014;9(9):e107952.
            44.  Pamies R, Schmidt RR, Martínez MDCL and de la Torre      doi: 10.1371/JOURNAL.PONE.0107952
               JG. The influence of mono and divalent cations on dilute   56.  Zhao C, Latif A, Williams KJ, Tirella A. The characterization
               and  non-dilute  aqueous  solutions  of sodium  alginates.   of molecular weight distribution and aggregation by
               Carbohydr Polym. 2010;80(1):248-253.               asymmetrical flow field-flow fractionation of unmodified
               https://www.researchgate.net/publication/272785338  and oxidized alginate. React Funct Polym. 2022;175:105292.
            45.  Forgács AF, Papp V, Paul G, et al. Mechanism of hydration      doi: 10.1016/j.reactfunctpolym.2022.105292
               and hydration induced structural changes of calcium alginate   57.  Wang H, Chen X, Wen Y, et al. A study on the correlation
               aerogel. ACS Appl Mater Interfaces. 2021;13:2997-3010.  between the oxidation degree of oxidized sodium alginate on its
               doi: 10.1021/acsami.0c17012                        degradability and gelation. Polymers (Basel). 2022;14(9):1679.
                                                                  doi: 10.3390/polym14091679
            46.  Kaklamani G, Cheneler D, Grover LM, Adams MJ, Bowen J.
               Mechanical properties of alginate hydrogels manufactured   58.  Kristiansen KA, Tomren  HB,  Christensen  BE.  Periodate
               using external gelation.  J Mech Behav Biomed Mater.   oxidized alginates: depolymerization kinetics.  Carbohydr
               2014;36:135-142.                                   Polym. 2011;86(4):1595-1601.
               doi: 10.1016/j.jmbbm.2014.04.013                   doi: 10.1016/J.CARBPOL.2011.06.069
            47.  Daly AC, Critchley SE, Rencsok EM, Kelly DJ. A comparison   59.  Larsen BE, Bjørnstad J, Pettersen EO, Tønnesen HH, Melvik
               of different bioinks for 3D bioprinting of fibrocartilage and   JE. Rheological characterization of an injectable alginate gel
               hyaline cartilage. Biofabrication. 2016;8(4):045002.  system. BMC Biotechnol. 2015;15(1):29.
               doi: 10.1088/1758-5090/8/4/045002                  doi: 10.1186/s12896-015-0147-7


            Volume 10 Issue 6 (2024)                       564                                doi: 10.36922/ijb.4014
   567   568   569   570   571   572   573   574   575   576   577