Page 50 - IJB-7-1
P. 50

3D Printing Technologies in Metallic Implants
               Surgery. Biomaterials, 27:4671–81.                  https://doi.org/10.1016/j.electacta.2008.08.001.
               https://doi.org/10.1016/j.biomaterials.2006.04.041.  143.  Muhonen V, Heikkinen R, Danilov A, et al., 2007, The Effect
           133.  Saunders S, 2017, Chinese Hospital Uses 3D Printed Tantalum   of Oxide Thickness on Osteoblast Attachment and Survival
               Implant in Successful Knee Replacement Surgery. Available   on NiTi Alloy. J Mater Sci Mater Med, 18:959–67.
               from:  https://3dprint.com/195286/3d-printed-tantalum-knee-     https://doi.org/10.1007/s10856-006-0082-1.
               implant/. [Last accessed on 2020 Nov 30].       144.  Cui ZD, Man HC, Yang XJ, 2005, The Corrosion and Nickel
           134.  Wever  D,  Elstrodt  J,  Veldhuizen A,  et al.,  2002,  Scoliosis   Release Behavior of Laser Surface-melted NiTi Shape Memory
               Correction  with  Shape-memory  Metal:  Results  of  an   Alloy in Hanks’ Solution. Surf Coatings Technol, 192:347–53.
               Experimental Study. Eur Spine J, 11:100–6.          https://doi.org/10.1016/j.surfcoat.2004.06.033.
               https://doi.org/10.1007/s005860100347.          145.  Chan CW, Hussain I, Waugh DG, et al., 2014, Effect of Laser
           135.  Wang Y, Zheng G, Zhang X, et al., 2011, Temporary Use of   Treatment on the Attachment and Viability of Mesenchymal
               Shape Memory Spinal Rod in the Treatment of Scoliosis. Eur   Stem Cell Responses on Shape Memory NiTi Alloy. Mater
               Spine J, 20:118–22.                                 Sci Eng C, 42:254–63.
               https://doi.org/10.1007/s00586-010-1514-7.          https://doi.org/10.1016/j.msec.2014.05.022.
           136.  Márquez JM, Pérez-Grueso, Fernández-Baíllo N, et al., 2012,   146.  Habijan  T,  Haberland  C,  Meier  H,  et al.,  2013,  The
               Gradual Scoliosis Correction Over Time with Shape-memory   Biocompatibility  of  Dense  and  Porous  Nickel-Titanium
               Metal:  A  Preliminary  Report  of  an  Experimental  Study.   Produced  by  Selective  Laser  Melting.  Mater Sci Eng C,
               Scoliosis, 7:20.                                    33:419–26.
               https://doi.org/10.1186/1748-7161-7-20.             https://doi.org/10.1016/j.msec.2012.09.008.
           137.  Dadbakhsh S, Speirs M, Van Humbeeck J, et al., 2016, Laser   147.  Strauß S, Dudziak S, Hagemann R, et al., 2012, Induction
                                                                   of Osteogenic Differentiation of Adipose Derived Stem Cells
               Additive Manufacturing of Bulk and Porous Shape-memory   by  Microstructured  Nitinol  Actuator-Mediated  Mechanical
               NiTi  Alloys:  From  Processes  to  Potential  Biomedical   Stress. PLoS One, 7:e51264.
               Applications. MRS Bull, 41:765–74.                  https://doi.org/10.1371/journal.pone.0051264.
               https://doi.org/10.1557/mrs.2016.209.           148.  Liu S, Liu J, Wang L, et al., 2020, Superelastic Behavior of
           138.  Liu Y, Xie ZL, Van Humbeec J, et al., 1999, Effect of Texture   In-Situ  Eutectic-Reaction  Manufactured  High  Strength  3D
               Orientation  on  the  Martensite  Deformation  of  NiTi  Shape   Porous NiTi-Nb Scaffold. Sci Mater, 181:121–6.
               Memory Alloy Sheet. Acta Mater, 47:645–60.          https://doi.org/10.1016/j.scriptamat.2020.02.025.
           139.  Motemani  Y,  Nili-Ahmadabadi  M,  Tan  MJ,  et  al.,  2009,   149.  Hafeez N, Liu J, Wang L, et al., 2020, Superelastic Response
               Effect of Cooling Rate on the Phase Transformation Behavior   of  Low-modulus  Porous  Beta-type Ti-35Nb-2Ta-3Zr Alloy
               and Mechanical Properties of Ni-rich NiTi Shape Memory   Fabricated  by  Laser  Powder  Bed  Fusion.  Addit Manuf,
               Alloy. J Alloys Compd, 469:164–8.                   34:101264.
               https://doi.org/10.1016/j.jallcom.2008.01.153.      https://doi.org/10.1016/j.addma.2020.101264.
           140.  Dadbakhsh  S,  Speirs  M,  Kruth  JP,  et al.,  2014,  Effect  of   150.  Putters JL, Sukul K, de Zeeuw GR, et al., 1992, Comparative
               SLM Parameters on Transformation Temperatures of Shape   Cell Culture Effects of Shape Memory Metal (Nitinol), Nickel
               Memory Nickel Titanium Parts. Adv Eng Mater, 16:1140–6.  and Titanium: A Biocompatibility Estimation. Eur Surg Res,
               https://doi.org/10.1002/adem.201300558.             24:378–82.
           141.  Bormann T, Schumacher R, Müller B, et al., 2012. Tailoring      https://doi.org/10.1159/000129231.
               Selective  Laser  Melting  Process  Parameters  for  NiTi   151.  Sing SL, An J, Yeong WY, et al., 2016, Laser and Electron-
               Implants. J Mater Eng Perform, 21:2519–24.          beam  Powder-bed  Additive  Manufacturing  of  Metallic
               https://doi.org/10.1007/s11665-012-0318-9.          Implants: A Review on Processes, Materials and Designs. J
           142.  Figueira N, Silva TM, Carmezim MJ, et al., 2009, Corrosion   Orthop Res, 34:369–85.
               Behaviour of NiTi Alloy. Electrochim Acta, 54:921–6.     https://doi.org/10.1002/jor.23075.








           46                          International Journal of Bioprinting (2021)–Volume 7, Issue 7
   45   46   47   48   49   50   51   52   53   54   55