Page 50 - IJB-7-1
P. 50
3D Printing Technologies in Metallic Implants
Surgery. Biomaterials, 27:4671–81. https://doi.org/10.1016/j.electacta.2008.08.001.
https://doi.org/10.1016/j.biomaterials.2006.04.041. 143. Muhonen V, Heikkinen R, Danilov A, et al., 2007, The Effect
133. Saunders S, 2017, Chinese Hospital Uses 3D Printed Tantalum of Oxide Thickness on Osteoblast Attachment and Survival
Implant in Successful Knee Replacement Surgery. Available on NiTi Alloy. J Mater Sci Mater Med, 18:959–67.
from: https://3dprint.com/195286/3d-printed-tantalum-knee- https://doi.org/10.1007/s10856-006-0082-1.
implant/. [Last accessed on 2020 Nov 30]. 144. Cui ZD, Man HC, Yang XJ, 2005, The Corrosion and Nickel
134. Wever D, Elstrodt J, Veldhuizen A, et al., 2002, Scoliosis Release Behavior of Laser Surface-melted NiTi Shape Memory
Correction with Shape-memory Metal: Results of an Alloy in Hanks’ Solution. Surf Coatings Technol, 192:347–53.
Experimental Study. Eur Spine J, 11:100–6. https://doi.org/10.1016/j.surfcoat.2004.06.033.
https://doi.org/10.1007/s005860100347. 145. Chan CW, Hussain I, Waugh DG, et al., 2014, Effect of Laser
135. Wang Y, Zheng G, Zhang X, et al., 2011, Temporary Use of Treatment on the Attachment and Viability of Mesenchymal
Shape Memory Spinal Rod in the Treatment of Scoliosis. Eur Stem Cell Responses on Shape Memory NiTi Alloy. Mater
Spine J, 20:118–22. Sci Eng C, 42:254–63.
https://doi.org/10.1007/s00586-010-1514-7. https://doi.org/10.1016/j.msec.2014.05.022.
136. Márquez JM, Pérez-Grueso, Fernández-Baíllo N, et al., 2012, 146. Habijan T, Haberland C, Meier H, et al., 2013, The
Gradual Scoliosis Correction Over Time with Shape-memory Biocompatibility of Dense and Porous Nickel-Titanium
Metal: A Preliminary Report of an Experimental Study. Produced by Selective Laser Melting. Mater Sci Eng C,
Scoliosis, 7:20. 33:419–26.
https://doi.org/10.1186/1748-7161-7-20. https://doi.org/10.1016/j.msec.2012.09.008.
137. Dadbakhsh S, Speirs M, Van Humbeeck J, et al., 2016, Laser 147. Strauß S, Dudziak S, Hagemann R, et al., 2012, Induction
of Osteogenic Differentiation of Adipose Derived Stem Cells
Additive Manufacturing of Bulk and Porous Shape-memory by Microstructured Nitinol Actuator-Mediated Mechanical
NiTi Alloys: From Processes to Potential Biomedical Stress. PLoS One, 7:e51264.
Applications. MRS Bull, 41:765–74. https://doi.org/10.1371/journal.pone.0051264.
https://doi.org/10.1557/mrs.2016.209. 148. Liu S, Liu J, Wang L, et al., 2020, Superelastic Behavior of
138. Liu Y, Xie ZL, Van Humbeec J, et al., 1999, Effect of Texture In-Situ Eutectic-Reaction Manufactured High Strength 3D
Orientation on the Martensite Deformation of NiTi Shape Porous NiTi-Nb Scaffold. Sci Mater, 181:121–6.
Memory Alloy Sheet. Acta Mater, 47:645–60. https://doi.org/10.1016/j.scriptamat.2020.02.025.
139. Motemani Y, Nili-Ahmadabadi M, Tan MJ, et al., 2009, 149. Hafeez N, Liu J, Wang L, et al., 2020, Superelastic Response
Effect of Cooling Rate on the Phase Transformation Behavior of Low-modulus Porous Beta-type Ti-35Nb-2Ta-3Zr Alloy
and Mechanical Properties of Ni-rich NiTi Shape Memory Fabricated by Laser Powder Bed Fusion. Addit Manuf,
Alloy. J Alloys Compd, 469:164–8. 34:101264.
https://doi.org/10.1016/j.jallcom.2008.01.153. https://doi.org/10.1016/j.addma.2020.101264.
140. Dadbakhsh S, Speirs M, Kruth JP, et al., 2014, Effect of 150. Putters JL, Sukul K, de Zeeuw GR, et al., 1992, Comparative
SLM Parameters on Transformation Temperatures of Shape Cell Culture Effects of Shape Memory Metal (Nitinol), Nickel
Memory Nickel Titanium Parts. Adv Eng Mater, 16:1140–6. and Titanium: A Biocompatibility Estimation. Eur Surg Res,
https://doi.org/10.1002/adem.201300558. 24:378–82.
141. Bormann T, Schumacher R, Müller B, et al., 2012. Tailoring https://doi.org/10.1159/000129231.
Selective Laser Melting Process Parameters for NiTi 151. Sing SL, An J, Yeong WY, et al., 2016, Laser and Electron-
Implants. J Mater Eng Perform, 21:2519–24. beam Powder-bed Additive Manufacturing of Metallic
https://doi.org/10.1007/s11665-012-0318-9. Implants: A Review on Processes, Materials and Designs. J
142. Figueira N, Silva TM, Carmezim MJ, et al., 2009, Corrosion Orthop Res, 34:369–85.
Behaviour of NiTi Alloy. Electrochim Acta, 54:921–6. https://doi.org/10.1002/jor.23075.
46 International Journal of Bioprinting (2021)–Volume 7, Issue 7

