Page 47 - IJB-7-1
P. 47
Attarilar, et al.
Metal-additive Manufacturing Modeling Strategies for 84. Van Cleynenbreugel T, Schrooten J, Van Oosterwyck H, et
Application-optimized Designs. Addit Manuf, 22:758–74. al., 2006, Micro-CT-based Screening of Biomechanical and
https://doi.org/10.1016/j.addma.2018.06.024. Structural Properties of Bone Tissue Engineering Scaffolds.
73. Thakar CM, Deshmukh SP, Mulla TA, 2020, A Review on Med Biol Eng Comput, 44:517–25.
Selective Deposition Lamination 3D Printing Technique. Int https://doi.org/10.1007/s11517-006-0071-z.
J Adv Sci Res Eng Trends, 4:7–11. 85. Wang P, Li X, Jiang Y, et al., 2020, Electron Beam Melted
74. Do AV, Smith R, Acri TM, Geary SM, et al., 2018, 3D Printing Heterogeneously Porous Microlattices for Metallic Bone
Technologies for 3D Scaffold Engineering. In: Functional 3D Applications: Design and Investigations of Boundary and
Tissue Engineering Scaffolds: Materials, Technologies, and Edge Effects. Addit Manuf, 36:101566.
Applications. Elsevier, Amsterdam, Netherlands, pp. 203–34. https://doi.org/10.1016/j.addma.2020.101566.
https://doi.org/10.1016/B978-0-08-100979-6.00009-4. 86. Cheng A, Humayun A, Cohen DJ, et al., 2014, Additively
75. Devillard R, Pagès E, Correa MM, et al., 2014, Cell Patterning Manufactured 3D Porous Ti-6Al-4V Constructs Mimic
by Laser-Assisted Bioprinting. Methods Cell Biol, 119:159-74. Trabecular Bone Structure and Regulate Osteoblast
https://doi.org/10.1016/B978-0-12-416742-1.00009-3. Proliferation, Differentiation and Local Factor Production
76. Akbari S, Zhang YF, Wang D, et al., 2018, 4D Printing and its in a Porosity and Surface Roughness Dependent Manner.
Biomedical Applications. In: 3D 4D Printing in Biomedical Biofabrication, 6:045007.
Applications. Wiley-VCH Verlag GmbH and Co., KGaA, https://doi.org/10.1088/1758-5082/6/4/045007.
Weinheim, Germany, pp. 343–72. 87. Markhoff J, Wieding J, Weissmann V, et al., 2015, Influence of
https://doi.org/10.1002/9783527813704.ch14. Different Three-Dimensional Open Porous Titanium Scaffold
77. Hao L, Tang D, Sun T, et al., 2020, Direct Ink Writing of Designs on Human Osteoblasts Behavior in Static and
Mineral Materials: A review. Int J Precis Eng Manuf Technol, Dynamic Cell Investigations. Materials (Basel), 8:5490–507.
1:266. https://doi.org/10.3390/ma8085259.
https://doi.org/10.1007/s40684-020-00222-6. 88. Wang P, Li X, Luo S, et al., 2021, Additively Manufactured
78. An J, Teoh JE, Suntornnond R, et al., 2015, Design and 3D Heterogeneously Porous Metallic Bone with Biostructural
Printing of Scaffolds and Tissues. Engineering, 1:261–8. Functions and Bone-like Mechanical Properties. J Mater Sci
https://doi.org/10.15302/J-ENG-2015061. Technol, 62:173–9.
79. Krishna BV, Xue W, Bose S, et al., 2008, Engineered Porous https://doi.org/10.1016/j.jmst.2020.05.056.
Metals for Implants. JOM, 60: 45–8. 89. Xue W, Krishna BV, Bandyopadhyay A, et al., 2007,
https://doi.org/10.1007/s11837-008-0059-2. Processing and Biocompatibility Evaluation of Laser
80. Yang J, Gu D, Lin K, et al., 2020, Laser 3D Printed Bio- Processed Porous Titanium. Acta Biomater, 3:1007–18.
inspired Impact Resistant Structure: Failure Mechanism under https://doi.org/10.1016/j.actbio.2007.05.009.
Compressive Loading. Virtual Phys Prototyp, 15:75–86. 90. Balla VK, Bodhak S, Bose S, et al., 2010, Porous Tantalum
https://doi.org/10.1080/17452759.2019.1677124. Structures for Bone Implants: Fabrication, Mechanical and
81. du Plessis A, Razavi SM, Berto F, 2020, The Effects of In Vitro Biological Properties. Acta Biomater, 6:3349–59.
Microporosity in Struts of Gyroid Lattice Structures Produced https://doi.org/10.1016/j.actbio.2010.01.046.
by Laser Powder Bed Fusion. Mater Des, 194:108899. 91. Jeon H, Lee H, Kim G, 2014, A Surface-Modified Poly(ɛ-
https://doi.org/10.1016/j.matdes.2020.108899. caprolactone) Scaffold Comprising Variable Nanosized
82. Meng L, Zhao J, Lan X, et al., 2020, Multi-objective Surface-Roughness Using a Plasma Treatment. Tissue Eng
Optimisation of Bio-inspired Lightweight Sandwich Part C Methods, 20:951–63.
Structures Based on Selective Laser Melting. Virtual Phys https://doi.org/10.1089/ten.tec.2013.0701.
Prototyp, 15:106–19. 92. Lv J, Jia Z, Li J, et al., 2015, Electron Beam Melting
https://doi.org/10.1080/17452759.2019.1692673. Fabrication of Porous Ti6Al4V Scaffolds: Cytocompatibility
83. Matena J, Petersen S, Gieseke M, et al., 2015, SLM Produced and Osteogenesis. Adv Eng Mater, 17:1391–8.
Porous Titanium Implant Improvements for Enhanced https://doi.org/10.1002/adem.201400508.
Vascularization and Osteoblast Seeding. Int J Mol Sci, 93. Biemond JE, Aquarius R, Verdonschot N, et al., 2011,
16:7478–92. Frictional and Bone Ingrowth Properties of Engineered
https://doi.org/10.3390/ijms16047478. Surface Topographies Produced by Electron Beam
International Journal of Bioprinting (2021)–Volume 7, Issue 7 43

