Page 47 - IJB-7-1
P. 47

Attarilar, et al.
               Metal-additive  Manufacturing  Modeling  Strategies  for   84.  Van Cleynenbreugel T, Schrooten J, Van Oosterwyck H, et
               Application-optimized Designs. Addit Manuf, 22:758–74.  al., 2006, Micro-CT-based Screening of Biomechanical and
               https://doi.org/10.1016/j.addma.2018.06.024.        Structural Properties of Bone Tissue Engineering Scaffolds.
           73.  Thakar CM, Deshmukh SP, Mulla TA, 2020, A Review on   Med Biol Eng Comput, 44:517–25.
               Selective Deposition Lamination 3D Printing Technique. Int      https://doi.org/10.1007/s11517-006-0071-z.
               J Adv Sci Res Eng Trends, 4:7–11.               85.  Wang P, Li X, Jiang Y, et al., 2020, Electron Beam Melted
           74.  Do AV, Smith R, Acri TM, Geary SM, et al., 2018, 3D Printing   Heterogeneously  Porous  Microlattices  for  Metallic  Bone
               Technologies for 3D Scaffold Engineering. In: Functional 3D   Applications:  Design  and  Investigations  of  Boundary  and
               Tissue Engineering Scaffolds: Materials, Technologies, and   Edge Effects. Addit Manuf, 36:101566.
               Applications. Elsevier, Amsterdam, Netherlands, pp. 203–34.     https://doi.org/10.1016/j.addma.2020.101566.
               https://doi.org/10.1016/B978-0-08-100979-6.00009-4.  86.  Cheng A, Humayun A, Cohen DJ, et al., 2014, Additively
           75.  Devillard R, Pagès E, Correa MM, et al., 2014, Cell Patterning   Manufactured  3D  Porous  Ti-6Al-4V  Constructs  Mimic
               by Laser-Assisted Bioprinting. Methods Cell Biol, 119:159-74.  Trabecular  Bone  Structure  and  Regulate  Osteoblast
               https://doi.org/10.1016/B978-0-12-416742-1.00009-3.  Proliferation,  Differentiation  and  Local  Factor  Production
           76.  Akbari S, Zhang YF, Wang D, et al., 2018, 4D Printing and its   in  a  Porosity  and  Surface  Roughness  Dependent  Manner.
               Biomedical Applications. In: 3D 4D Printing in Biomedical   Biofabrication, 6:045007.
               Applications.  Wiley-VCH  Verlag  GmbH  and  Co.,  KGaA,      https://doi.org/10.1088/1758-5082/6/4/045007.
               Weinheim, Germany, pp. 343–72.                  87.  Markhoff J, Wieding J, Weissmann V, et al., 2015, Influence of
               https://doi.org/10.1002/9783527813704.ch14.         Different Three-Dimensional Open Porous Titanium Scaffold
           77.  Hao L, Tang D, Sun T, et al., 2020, Direct Ink Writing of   Designs  on  Human  Osteoblasts  Behavior  in  Static  and
               Mineral Materials: A review. Int J Precis Eng Manuf Technol,   Dynamic Cell Investigations. Materials (Basel), 8:5490–507.
               1:266.                                              https://doi.org/10.3390/ma8085259.
               https://doi.org/10.1007/s40684-020-00222-6.     88.  Wang P, Li X, Luo S, et al., 2021, Additively Manufactured
           78.  An J, Teoh JE, Suntornnond R, et al., 2015, Design and 3D   Heterogeneously  Porous  Metallic  Bone  with  Biostructural
               Printing of Scaffolds and Tissues. Engineering, 1:261–8.  Functions and Bone-like Mechanical Properties. J Mater Sci
               https://doi.org/10.15302/J-ENG-2015061.             Technol, 62:173–9.
           79.  Krishna BV, Xue W, Bose S, et al., 2008, Engineered Porous      https://doi.org/10.1016/j.jmst.2020.05.056.
               Metals for Implants. JOM, 60: 45–8.             89.  Xue  W,  Krishna  BV,  Bandyopadhyay  A,  et  al.,  2007,
               https://doi.org/10.1007/s11837-008-0059-2.          Processing  and  Biocompatibility  Evaluation  of  Laser
           80.  Yang  J,  Gu  D,  Lin  K,  et al.,  2020,  Laser  3D  Printed  Bio-  Processed Porous Titanium. Acta Biomater, 3:1007–18.
               inspired Impact Resistant Structure: Failure Mechanism under      https://doi.org/10.1016/j.actbio.2007.05.009.
               Compressive Loading. Virtual Phys Prototyp, 15:75–86.  90.  Balla VK, Bodhak S, Bose S, et al., 2010, Porous Tantalum
               https://doi.org/10.1080/17452759.2019.1677124.      Structures for Bone Implants: Fabrication, Mechanical and
           81.  du  Plessis  A,  Razavi  SM,  Berto  F,  2020,  The  Effects  of   In Vitro Biological Properties. Acta Biomater, 6:3349–59.
               Microporosity in Struts of Gyroid Lattice Structures Produced      https://doi.org/10.1016/j.actbio.2010.01.046.
               by Laser Powder Bed Fusion. Mater Des, 194:108899.  91.  Jeon H, Lee H, Kim G, 2014, A Surface-Modified Poly(ɛ-
               https://doi.org/10.1016/j.matdes.2020.108899.       caprolactone)  Scaffold  Comprising  Variable  Nanosized
           82.  Meng  L,  Zhao  J,  Lan  X,  et al.,  2020,  Multi-objective   Surface-Roughness  Using  a  Plasma Treatment.  Tissue Eng
               Optimisation  of  Bio-inspired  Lightweight  Sandwich   Part C Methods, 20:951–63.
               Structures  Based  on  Selective  Laser  Melting.  Virtual  Phys      https://doi.org/10.1089/ten.tec.2013.0701.
               Prototyp, 15:106–19.                            92.  Lv  J,  Jia  Z,  Li  J,  et al.,  2015,  Electron  Beam  Melting
               https://doi.org/10.1080/17452759.2019.1692673.      Fabrication of Porous Ti6Al4V Scaffolds: Cytocompatibility
           83.  Matena J, Petersen S, Gieseke M, et al., 2015, SLM Produced   and Osteogenesis. Adv Eng Mater, 17:1391–8.
               Porous  Titanium  Implant  Improvements  for  Enhanced      https://doi.org/10.1002/adem.201400508.
               Vascularization  and  Osteoblast  Seeding.  Int  J  Mol  Sci,   93.  Biemond  JE,  Aquarius  R,  Verdonschot  N,  et al.,  2011,
               16:7478–92.                                         Frictional  and  Bone  Ingrowth  Properties  of  Engineered
               https://doi.org/10.3390/ijms16047478.               Surface  Topographies  Produced  by  Electron  Beam

                                       International Journal of Bioprinting (2021)–Volume 7, Issue 7        43
   42   43   44   45   46   47   48   49   50   51   52