Page 45 - IJB-7-1
P. 45
Attarilar, et al.
of Additive Manufactured Ti-6Al-4V by Electron Beam Components by Selective Electron Beam Melting a Review.
Melting. In: Solid Free from fabrication. 2016 Proceeding 27 Int Mater Rev, 61:361–77.
th
Annual International Solid Freeform Fabrication Symposium https://doi.org/10.1080/09506608.2016.1176289.
Additive Manufacturing. Conference, pp. 691–704. 38. Chia HN, Wu BM, 2015, Recent Advances in 3D Printing of
28. Nandwana P, Lee Y, 2020, Influence of Scan Strategy on Biomaterials. J Biol Eng, 9:4.
Porosity and Microstructure of Ti-6Al-4V Fabricated by https://doi.org/10.1186/s13036-015-0001-4.
Electron Beam Powder Bed Fusion. Mater Today Commun, 39. Waheed S, Cabot JM, Macdonald NP, et al., 2016, 3D Printed
24:100962. Microfluidic Devices: Enablers and Barriers. Lab Chip,
https://doi.org/10.1016/j.mtcomm.2020.100962. 16:1993–2013.
29. Tan JH, Sing SL, Yeong WY, 2020, Microstructure Modelling https://doi.org/10.1039/C6LC00284F.
for Metallic Additive Manufacturing: A Review. Virtual Phys 40. Zhang Y, Jarosinski W, Jung YG, et al., 2018, Additive
Prototyp, 15:87–105. Manufacturing Processes and Equipment. In: Additive
https://doi.org/10.1080/17452759.2019.1677345. Manufacturing. Elsevier, Amsterdam, Netherlands, pp. 39–51.
30. Wang P, Tan X, Nai ML, et al., 2016, Spatial and Geometrical- https://doi.org/10.1016/B978-0-12-812155-9.00002-5.
based Characterization of Microstructure and Microhardness 41. Upcraft S, Fletcher R, 2003, The Rapid Prototyping
for an Electron Beam Melted Ti-6Al-4V Component. Mater Technologies. Assem Autom, 23:318–30.
Des, 95:287–95. https://doi.org/10.1108/01445150310698634.
https://doi.org/10.1016/j.matdes.2016.01.093. 42. Hwang HH, Zhu W, Victorine G, et al., 2018, 3D-Printing
31. Galarraga H, Lados DA, Dehoff RR, et al., 2016, Effects of of Functional Biomedical Microdevices via Light and
the Microstructure and Porosity on Properties of Ti-6Al-4V Extrusion-Based Approaches. Small Methods, 2:1700277.
ELI Alloy Fabricated by Electron Beam Melting (EBM). https://doi.org/10.1002/smtd.201700277.
Addit Manuf, 10:47–57. 43. Pilipović A, RaosP, Šercer M, 2009, Experimental Analysis
https://doi.org/10.1016/j.addma.2016.02.003. of Properties of Materials for Rapid Prototyping. Int J Adv
32. Wang P, Nai ML, Sin WJ, et al., 2018, Realizing a Full Manuf Technol, 40:105–15.
Volume Component by In-Situ Welding during Electron https://doi.org/10.1007/s00170-007-1310-7.
Beam Melting Process. Addit Manuf, 22:375–80. 44. Bhattacharjee N, Urrios A, Kang S, et al., 2016, The
https://doi.org/10.1016/j.addma.2018.05.022. Upcoming 3D-Printing Revolution in Microfluidics. Lab
33. Wang P, Goh MH, Li Q, et al., 2020, Effect of Defects and Chip, 16:1720–42.
Specimen Size with Rectangular Cross-section on the Tensile https://doi.org/10.1039/C6LC00163G.
Properties of Additively Manufactured Components. Virtual 45. Hamid Q, Snyder J, Wang C, et al., 2011, Fabrication of
Phys Prototyp, 15:251–64. Three-dimensional Scaffolds Using Precision Extrusion
https://doi.org/10.1080/17452759.2020.1733430. Deposition with an Assisted Cooling Device. Biofabrication,
34. Pan Wang JW, Sin WJ, Nai ML, 2017, Effects of Processing 3:034109.
Parameters on Surface Roughness of Additive Manufactured https://doi.org/10.1088/1758-5082/3/3/034109.
Ti-6Al-4V via Electron Beam Melting. Materials (Basel), 46. Vaezi M, Zhong G, Kalami H, et al., 2018, Extrusion-based
10:1121. 3D Printing Technologies for 3D Scaffold Engineering. In:
https://doi.org/10.3390/ma10101121. Functional 3D Tissue Engineering Scaffolds: Materials,
35. Zhang LC, Chen LY, Wang L, 2020, Surface Modification of Technologies, and Applications. Elsevier, Amsterdam,
Titanium and Titanium Alloys: Technologies, Developments, Netherlands, pp. 235–54.
and Future Interests. Adv Eng Mater, 22: 1901258. https://doi.org/10.1016/B978-0-08-100979-6.00010-0.
https://doi.org/10.1002/adem.201901258. 47. Greulich M, Greul M, Pintat T, 1995, Fast, Functional
36. Singh R, Singh S, Hashmi MS, 2016, Implant Materials and Prototypes via Multiphase Jet Solidification. Rapid Prototyp
Their Processing Technologies. In: The Reference Module J, 1:20-5.
in Materials Science and Materials Engineering. Elsevier, https://doi.org/10.1108/13552549510146649.
Amsterdam, Netherlands. 48. Carneiro OS, Silva AF, Gomes R, 2015, Fused Deposition
https://doi.org/10.1016/B978-0-12-803581-8.04156-4. Modeling with Polypropylene. Mater Des, 83:768–76.
37. Körner C, 2016, Additive Manufacturing of Metallic https://doi.org/10.1016/j.matdes.2015.06.053.
International Journal of Bioprinting (2021)–Volume 7, Issue 7 41

