Page 45 - IJB-7-1
        P. 45
     Attarilar, et al.
               of  Additive  Manufactured  Ti-6Al-4V  by  Electron  Beam   Components by Selective Electron Beam Melting a Review.
               Melting. In: Solid Free from fabrication. 2016 Proceeding 27    Int Mater Rev, 61:361–77.
                                                          th
               Annual International Solid Freeform Fabrication Symposium      https://doi.org/10.1080/09506608.2016.1176289.
               Additive Manufacturing. Conference, pp. 691–704.  38.  Chia HN, Wu BM, 2015, Recent Advances in 3D Printing of
           28.  Nandwana  P,  Lee  Y,  2020,  Influence  of  Scan  Strategy  on   Biomaterials. J Biol Eng, 9:4.
               Porosity  and  Microstructure  of  Ti-6Al-4V  Fabricated  by      https://doi.org/10.1186/s13036-015-0001-4.
               Electron Beam Powder Bed Fusion. Mater Today Commun,   39.  Waheed S, Cabot JM, Macdonald NP, et al., 2016, 3D Printed
               24:100962.                                          Microfluidic  Devices:  Enablers  and  Barriers.  Lab Chip,
               https://doi.org/10.1016/j.mtcomm.2020.100962.       16:1993–2013.
           29.  Tan JH, Sing SL, Yeong WY, 2020, Microstructure Modelling      https://doi.org/10.1039/C6LC00284F.
               for Metallic Additive Manufacturing: A Review. Virtual Phys   40.  Zhang  Y,  Jarosinski  W,  Jung  YG,  et al.,  2018,  Additive
               Prototyp, 15:87–105.                                Manufacturing  Processes  and  Equipment.  In:  Additive
               https://doi.org/10.1080/17452759.2019.1677345.      Manufacturing. Elsevier, Amsterdam, Netherlands, pp. 39–51.
           30.  Wang P, Tan X, Nai ML, et al., 2016, Spatial and Geometrical-     https://doi.org/10.1016/B978-0-12-812155-9.00002-5.
               based Characterization of Microstructure and Microhardness   41.  Upcraft  S,  Fletcher  R,  2003,  The  Rapid  Prototyping
               for an Electron Beam Melted Ti-6Al-4V Component. Mater   Technologies. Assem Autom, 23:318–30.
               Des, 95:287–95.                                     https://doi.org/10.1108/01445150310698634.
               https://doi.org/10.1016/j.matdes.2016.01.093.   42.  Hwang HH, Zhu W, Victorine G, et al., 2018, 3D-Printing
           31.  Galarraga H, Lados DA, Dehoff RR, et al., 2016, Effects of   of  Functional  Biomedical  Microdevices  via  Light  and
               the Microstructure and Porosity on Properties of Ti-6Al-4V   Extrusion-Based Approaches. Small Methods, 2:1700277.
               ELI  Alloy  Fabricated  by  Electron  Beam  Melting  (EBM).      https://doi.org/10.1002/smtd.201700277.
               Addit Manuf, 10:47–57.                          43.  Pilipović A, RaosP, Šercer M, 2009, Experimental Analysis
               https://doi.org/10.1016/j.addma.2016.02.003.        of Properties of Materials for Rapid Prototyping. Int J Adv
           32.  Wang  P,  Nai  ML,  Sin  WJ,  et al.,  2018,  Realizing  a  Full   Manuf Technol, 40:105–15.
               Volume  Component  by  In-Situ  Welding  during  Electron      https://doi.org/10.1007/s00170-007-1310-7.
               Beam Melting Process. Addit Manuf, 22:375–80.   44.  Bhattacharjee  N,  Urrios  A,  Kang  S,  et  al.,  2016,  The
               https://doi.org/10.1016/j.addma.2018.05.022.        Upcoming  3D-Printing  Revolution  in  Microfluidics.  Lab
           33.  Wang P, Goh MH, Li Q, et al., 2020, Effect of Defects and   Chip, 16:1720–42.
               Specimen Size with Rectangular Cross-section on the Tensile      https://doi.org/10.1039/C6LC00163G.
               Properties of Additively Manufactured Components. Virtual   45.  Hamid  Q,  Snyder  J,  Wang  C,  et al.,  2011,  Fabrication  of
               Phys Prototyp, 15:251–64.                           Three-dimensional  Scaffolds  Using  Precision  Extrusion
               https://doi.org/10.1080/17452759.2020.1733430.      Deposition with an Assisted Cooling Device. Biofabrication,
           34.  Pan Wang JW, Sin WJ, Nai ML, 2017, Effects of Processing   3:034109.
               Parameters on Surface Roughness of Additive Manufactured      https://doi.org/10.1088/1758-5082/3/3/034109.
               Ti-6Al-4V  via  Electron  Beam  Melting.  Materials  (Basel),   46.  Vaezi M, Zhong G, Kalami H, et al., 2018, Extrusion-based
               10:1121.                                            3D Printing Technologies for 3D Scaffold Engineering. In:
               https://doi.org/10.3390/ma10101121.                 Functional  3D  Tissue  Engineering  Scaffolds:  Materials,
           35.  Zhang LC, Chen LY, Wang L, 2020, Surface Modification of   Technologies,  and  Applications.  Elsevier,  Amsterdam,
               Titanium and Titanium Alloys: Technologies, Developments,   Netherlands, pp. 235–54.
               and Future Interests. Adv Eng Mater, 22: 1901258.     https://doi.org/10.1016/B978-0-08-100979-6.00010-0.
               https://doi.org/10.1002/adem.201901258.         47.  Greulich  M,  Greul  M,  Pintat  T,  1995,  Fast,  Functional
           36.  Singh R, Singh S, Hashmi MS, 2016, Implant Materials and   Prototypes via Multiphase Jet Solidification. Rapid Prototyp
               Their  Processing  Technologies.  In:  The  Reference  Module   J, 1:20-5.
               in  Materials  Science  and  Materials  Engineering.  Elsevier,      https://doi.org/10.1108/13552549510146649.
               Amsterdam, Netherlands.                         48.  Carneiro OS, Silva AF, Gomes R, 2015, Fused Deposition
               https://doi.org/10.1016/B978-0-12-803581-8.04156-4.  Modeling with Polypropylene. Mater Des, 83:768–76.
           37.  Körner  C,  2016,  Additive  Manufacturing  of  Metallic      https://doi.org/10.1016/j.matdes.2015.06.053.
                                       International Journal of Bioprinting (2021)–Volume 7, Issue 7        41
     	
