Page 64 - IJB-7-1
P. 64

Additive Manufacture of Emulsion Inks to Produce Respiratory Protective Filters
               Respirators and Surgical Masks Against Particles-tested with      https://doi.org/10.1021/la00092a026
               Human Subjects. J Healthc Eng, 2016:8572493.    32.  Cameron  NR,  Barbetta  A,  2000,  The  Influence  of  Porogen
               https://doi.org/10.1155/2016/8572493                Type on the Porosity, Surface Area and Morphology of Poly
           22.  Langford CR, Johnson DW, Cameron NR, 2015, Preparation   (Divinylbenzene) PolyHIPE Foams. J Mater Chem, 10:2466–71.
               of  Hybrid  Thiol-Acrylate  Emulsion-templated  Porous      https://doi.org/10.1039/b003596n
               Polymers by Interfacial Copolymerization of High Internal   33.  Barbetta A,  Cameron  NR,  2004,  Morphology  and  Surface
               Phase Emulsions. Macromol Rapid Commun, 36:834–9.   Area of Emulsion-Derived (PolyHIPE) Solid Foams Prepared
               https://doi.org/10.1002/marc.201400733              with  Oil-phase  Soluble  Porogenic  Solvents:  Span  80  as
           23.  Carnachan  RJ,  Bokhari  M,  Przyborski  SA,  et  al.,  2006,   Surfactant. Macromolecules, 37:3188–201.
               Tailoring the Morphology of Emulsion-templated  Porous      https://doi.org/10.1021/ma0359436
               Polymers. Soft Matter, 2:608–16.                34.  Williams  JM,  Wrobleski  DA,  1988,  Spatial  Distribution
               https://doi.org/10.1039/b603211g                    of the Phases in Water-in-oil Emulsions. Open and Closed
           24.  Althubeiti KM, Horozov TS, 2019, Efficient Preparation of   Microcellular  Foams from Cross-linked Polystyrene.
               Macroporous Poly (Methyl Methacrylate)  Materials  from   Langmuir, 4:656–62.
               High  Internal  Phase  Emulsion  Templates.  React Function      https://doi.org/10.1021/la00081a027
               Polymers, 142:207–12.                           35.  Gurevitch  I,  Silverstein  MS,  2010,  Polymerized  Pickering
               https://doi.org/10.1016/j.reactfunctpolym.2019.06.015  HIPEs: Effects of Synthesis Parameters on Porous Structure.
           25.  Moglia  RS,  Holm  JL,  Sears  NA,  et  al.,  2011,  Injectable   J Polymer Sci Part A, 48:1516–25.
               polyHIPEs as High-porosity Bone Grafts. Biomacromolecules,      https://doi.org/10.1002/pola.23911
               12:3621–8.                                      36.  Robinson  JL,  Moglia  RS,  Stuebben  MC,  et al.,  2014,
               https://doi.org/10.1021/bm2008839                   Achieving  Interconnected  Pore  Architecture  in  Injectable
           26.  Paterson  TE,  Gigliobianco  G,  Sherborne  C,  et al.,  2018,   polyHIPEs for Bone Tissue Engineering. Tissue Eng Part A,
               Porous  Microspheres Support Mesenchymal Progenitor   20:1103–12.
               Cell  Ingrowth and Stimulate  Angiogenesis.  APL Bioeng,      https://doi.org/10.1089/ten.tea.2013.0319
               2:026103.                                       37.  Cameron NR, Sherrington DC, Albiston L, et al., 1996, Study
               https://doi.org/10.1063/1.5008556                   of the Formation of the Open-cellular Morphology of Poly
           27.  Huš S, Krajnc P, 2014, PolyHIPEs from Methyl Methacrylate:   (Styrene/Divinylbenzene)  polyHIPE  Materials  by  Cryo-
               Hierarchically  Structured  Microcellular  Polymers  with   SEM. Coll Polymer Sci, 274:592–5.
               Exceptional Mechanical Properties. Polymer, 55:4420–24.     https://doi.org/10.1007/bf00655236
               https://doi.org/10.1016/j.polymer.2014.07.007   38.  Lissant KJ, 1966, The Geometry of High-internal-phase-ratio
           28.  Bokhari  M,  Carnachan  RJ,  Przyborski  SA,  et  al.,  2007,   Emulsions. J Coll Int Sci, 22:462–8.
               Emulsion-templated Porous Polymers as Scaffolds for Three      https://doi.org/10.1016/0021-9797(66)90091-9
               Dimensional  Cell  Culture:  Effect  of  Synthesis  Parameters   39.  Owen  R,  Sherborne  C,  Paterson  T,  et al.,  2016,  Emulsion
               on  Scaffold  Formation  and  Homogeneity.  J  Mater  Chem,   Templated  Scaffolds with  Tunable Mechanical  Properties
               17:4088–94.                                         for Bone Tissue Engineering. J Mech Behav Biomed Mater,
               https://doi.org/10.1039/b707499a                    54:159–72.
           29.  Richez A, Deleuze H, Vedrenne P, et al., 2005, Preparation      https://doi.org/10.1016/j.jmbbm.2015.09.019
               of Ultra-low-density Microcellular Materials. J Appl Polymer   40.  San Manley S, Graeber N, Grof Z, et al., 2009, New Insights
               Sci, 96:2053–63.                                    into the Relationship Between Internal Phase Level of Emulsion
               https://doi.org/10.1002/app.21668                   Templates  and  Gas-liquid  Permeability  of  Interconnected
           30.  Xu H, Zheng X, Huang Y, et al., 2016, Interconnected Porous   Macroporous Polymers. Soft Matter, 5:4780–7.
               Polymers with Tunable Pore Throat Size Prepared via Pickering      https://doi.org/10.1039/b900426b
               High Internal Phase Emulsions. Langmuir, 32:38–45.  41.  Tadros  TF,  2013,  Emulsion  Formation,  Stability,  and
               https://doi.org/10.1021/acs.langmuir.5b03037        Rheology. Emulsion Formation Stabil, 1:1–75.
           31.  Williams  JM,  Gray  AJ,  Wilkerson  MH,  1990,  Emulsion      https://doi.org/10.1002/9783527647941.ch1
               Stability and Rigid Foams from Styrene or Divinylbenzene   42.  Brun N, Ungureanu S, Deleuze H, et al., 2011, Hybrid Foams,
               Water-in-oil Emulsions. Langmuir, 6:437–44.         Colloids and Beyond: From Design to Applications. Chem

           60                          International Journal of Bioprinting (2021)–Volume 7, Issue 1
   59   60   61   62   63   64   65   66   67   68   69