Page 68 - IJB-7-1
P. 68

Additive Manufacture of Emulsion Inks to Produce Respiratory Protective Filters
               https://doi.org/10.1021/acs.macromol.8b02610        Printing  of  Hierarchical  Silk  Fibroin  Structures.  ACS Appl
           110.  Sihler S, Schrade A, Cao Z, et al., 2015, Inverse Pickering   Mater Int, 8:34677–85.
               Emulsions  with  Droplet  Sizes  Below  500  nm.  Langmuir,      https://doi.org/10.1021/acsami.6b11440
               31:10392–401.                                   122.  Giglia S, Bohonak D, Greenhalgh P, et al., 2015. Measurement
               https://doi.org/10.1021/acs.langmuir.5b02735        of Pore Size Distribution and Prediction of Membrane Filter
           111.  Zhu W,  Zhu Y,  Zhou  C,  et al.,  2019,  Pickering  Emulsion-  Virus Retention Using Liquid-liquid Porometry. J Memb Sci,
               templated Polymers: Insights into the Relationship Between   476:399–409.
               Surfactant and Interconnecting Pores. RSC Adv, 9:18909–16.     https://doi.org/10.1016/j.memsci.2014.11.053
               https://doi.org/10.1039/c9ra03186c              123.  Schultz S, Wagner G, Urban K, et al., 2004, High-pressure
           112.  Sommer MR, Alison L, Minas C, et al., 2017, 3D Printing of   Homogenization as a Process for Emulsion Formation. Chem
               Concentrated Emulsions into Multiphase Biocompatible Soft   Eng Technol, 27:361–8.
               Materials. Soft Matter, 13:1794–803.                https://doi.org/10.1002/ceat.200406111
               https://doi.org/10.1039/c6sm02682f              124.  Vladisavljević GT, 2016, Recent Advances in the Production
           113.  Tu R, Sprague E, Sodano HA, 2020, Precipitation Printing   of Controllable Multiple Emulsions Using Microfabricated
               Towards Diverse Materials,  Mechanical  Tailoring  and   Devices. Particuology, 24:1–17.
               Functional Devices. Addit Manuf, 2020:101358.       https://doi.org/10.1016/j.partic.2015.10.001
               https://doi.org/10.1016/j.addma.2020.101358     125.  Costantini  M,  Colosi  C,  Guzowski  J,  et al.,  2014,  Highly
           114.  Karyappa  R,  Ohno  A,  Hashimoto  M,  2019,  Immersion   Ordered  and  Tunable  Polyhipes  by  Using  Microfluidics.
               Precipitation 3D Printing (ip 3DP). Mater Horiz, 6:1834–44.  J Mater Chem B, 2:2290–300.
               https://doi.org/10.1039/c9mh00730j                  https://doi.org/10.1039/c3tb21227k
           115.  Yang T, Hu Y, Wang C, et al., 2017, Fabrication of Hierarchical   126.  Quell A, Elsing J, Drenckhan W, et al., 2015, Monodisperse
               Macroporous  Biocompatible  Scaffolds  by  Combining   Polystyrene  Foams  Via  Microfluidics-a  Novel  Templating
               Pickering  High  Internal  Phase  Emulsion  Templates  with   Route. Adv Eng Mater, 17:604–9.
               Three-dimensional Printing. ACS Appl Mater Int, 9:22950–8.     https://doi.org/10.1002/adem.201500040
               https://doi.org/10.1021/acsami.7b05012.s001     127.  Quell A,  de  Bergolis  B,  Drenckhan  W,  et  al.,  2016,  How
           116.  Hu  Y,  Wang  J,  Li  X,  et al.,  2019,  Facile  Preparation  of   the  Locus  of  Initiation  Influences  the  Morphology  and
               Bioactive  Nanoparticle/Poly  (ε-caprolactone)  Hierarchical   the Pore Connectivity of a Monodisperse Polymer Foam.
               Porous  Scaffolds  Via  3D  Printing  of  High  Internal  Phase   Macromolecules, 49:5059–67.
               Pickering Emulsions. J Coll Int Sci, 545:104–15.     https://doi.org/10.1021/acs.macromol.6b00494
               https://doi.org/10.1016/j.jcis.2019.03.024      128.  Elsing J, Stefanov T, Gilchrist MD, et al., 2017, Monodisperse
           117.  Visser CW, Amato DN, Mueller J, et al., 2019, Architected   Polystyrene Foams Via Polymerization of Foamed Emulsions:
               Polymer  Foams  via  Direct  Bubble  Writing.  Adv. Mater,   Structure and Mechanical Properties. Phys Chem Chem Phys,
               31:1904668.                                         19:5477–5485.
               https://doi.org/10.1002/adma.201904668              https://doi.org/10.1039/c6cp06612g
           118.  Voisin HP, Gordeyeva K, Siqueira G, et al., 2018, 3D Printing of   129.  Costantini  M,  Jaroszewicz  J,  Kozoń  Ł,  et al.,  2019,
               Strong Lightweight Cellular Structures Using Polysaccharide-  3D-printing of Functionally Graded Porous Materials Using
               based Composite Foams. ACS Sustain Chem Eng, 6:17160–7.  On-demand  Reconfigurable  Microfluidics.  Ange  Chem Int
               https://doi.org/10.1021/acssuschemeng.8b04549       Ed, 58:7620–7625.
           119.  Wirth  DM,  Jaquez  A,  Gandarilla  S,  et al.,  2020,  Highly      https://doi.org/10.1002/anie.201900530
               Expandable Foam for Lithographic 3D Printing. ACS Appl   130.  Abate AR, Romanowsky MB, Agresti JJ, et al., 2009, Valve-
               Mater Int, 12:19033–43.                             based Flow Focusing for Drop Formation. Appl Phys Lett,
               https://doi.org/10.1021/acsami.0c02683              94:023503.
           120.  Mu X, Bertron T, Dunn C, et al., 2017, Porous Polymeric      https://doi.org/10.1063/1.3067862
               Materials  by  3D  Printing  of  Photocurable  Resin.  Mater   131.  Stubenrauch C, Menner A, Bismarck A, et al., 2018, Emulsion
               Horiz, 4:442–9.                                     and Foam  Templating-promising  Routes to  Tailor-made
               https://doi.org/10.1039/c7mh00084g                  Porous Polymers. Ange Chem Int Ed, 57:10024-10032.
           121.  Sommer  MR,  Schaffner  M,  Carnelli  D,  et  al.,  2016,  3D      https://doi.org/10.1002/anie.201801466

           64                          International Journal of Bioprinting (2021)–Volume 7, Issue 1
   63   64   65   66   67   68   69   70   71   72   73