Page 42 - IJB-7-2
P. 42

Additively Manufactured NiTi Implants
               https://doi.org/10.1016/j.addma.2020.101150.        https://doi.org/10.1007/s10856-018-6044-6.
           44.  Saedi  S,  Turabi AS, Andani  MT,  et al., 2016,   54.  Yang Q, Kaihua S, Yang C, et al., 2020, Compression and
               Thermomechanical  Characterization of Ni-Rich  NiTi   Superelasticity  Behaviors  of NiTi Porous Structures  with
               Fabricated by Selective Laser Melting. Smart Mater Struct,   Tiny Strut Fabricated by Selective Laser Melting. J Alloys
               25:035005.                                          Compd, 858:157674.
               https://doi.org/10.1088/0964-1726/25/3/035005.      https://doi.org/10.1016/j.jallcom.2020.157674.
           45.  Dash B, Das M, Das M, et al., 2019, A Concise Review on   55.  Fu J, Hu Z, Song X, et al., 2020, Micro Selective Laser Melting
               Machinability of NiTi Shape Memory Alloys. Mater Today,   of NiTi Shape Memory  Alloy: Defects, Microstructures
               18:5141–50.                                         and  Thermal/Mechanical  Properties.  Opt Lasers Eng,
               https://doi.org/10.1016/j.matpr.2019.07.511.        131:106374.
           46.  Dallago M, Fontanari V, Winiarski B, et al., 2017, Fatigue   https://doi.org/10.1016/j.optlastec.2020.106374.
               Properties of  Ti6Al4V Cellular  Specimens Fabricated  Via   56.  Brailovski  V,  Trochu F, 1996, Review of Shape Memory
               SLM: CAD vs Real  Geometry.  Procedia  Struct Integr,   Alloys Medical Applications in Russia. Biomed Mater Eng,
               7:116–23.                                           6:291–8.
               https://doi.org/10.1016/j.prostr.2017.11.068.       https://doi.org/10.3233/bme-1996-6406.
           47.  Dadbakhsh S, Speirs M, Kruth JP,  et al., 2014, Effect of   57.  Sanders JO, Sanders AE, More R, et al., 1993, A Preliminary
               SLM Parameters on Transformation Temperatures of Shape   Investigation  of Shape  Memory  Alloys in  the  Surgical
               Memory Nickel Titanium Parts. Adv Eng Mater, 16:1140–6.  Correction of Scoliosis. Spine, 18:1640–6.
               https://doi.org/10.1002/adem.201300558.             https://doi.org/10.1097/00007632-199309000-00012.
           48.  Farber E, Zhu JN,  Popovich A,  et al., 2020, A Review of   58.  Mei FR, Ren XJ, Wang WD, 1997, The Biomechanical Effect
               NiTi Shape Memory Alloy as a Smart Material Produced by   and Clinical Application of a Ni-Ti Shape Memory Expansion
               Additive Manufacturing. Mater Today, 30:761–7.      Clamp. Spine, 22:2083–28.
               https://doi.org/10.1016/j.matpr.2020.01.563.        https://doi.org/10.1097/00007632-199709150-00004.
           49.  Haberland  C, Frenzel  J, 2012, Proceedings  of the  ASME   59.  Nieslanik JM, 1998, Titanium-nickel shape memory clamps
               Conference on Smart Materials  Adaptive Structures and   in small bone surgery. Arch Orthop Trauma Surg, 117:341–4.
               Intelligent  Systems, September  19-21, 2012, On the   https://doi.org/10.1007/s004020050262.
               Properties of Ni-Rich NiTi Shape Memory Parts Produced by   60.  Xu W, Frank TG, Stockham G, et al., 1999, Shape Memory
               Selective Laser Melting, Georgia, United States, p1–8.  Alloy Fixator System for Suturing Tissue in Minimal Access
               https://doi.org/10.1115/smasis2012-8040.            Surgery. Ann Biomed Eng, 27:663–9.
           50.  Biffi CA, Fiocchi J, Valenza F, et al., 2020, Selective Laser   https://doi.org/10.1114/1.216.
               Melting of NiTi Shape Memory  Alloy: Processability,   61.  Kuboki Y, Jin Q, Kikuchi M, et al., 2002, Geometry of Artificial
               Microstructure,  and  Superelasticity.  Shap Mem Superelast,   ECM: Sizes of Pores Controlling Phenotype Expression in
               6:342–53.                                           BMP-Induced Osteogenesis  and Chondrogenesis.  Connect
               https://doi.org/10.1007/s40830-020-00298-8.         Tissue Res, 43:529–34.
           51.  Yang Y, Zhan JB, Sun ZZ, et al., 2019, Evolution of Functional   https://doi.org/10.1080/713713489.
               Properties Realized by Increasing Laser Scanning Speed for   62.  Story BJ,  Wagner  WR, Gaisser DM,  et al., 1998,  In vivo
               the Selective Laser Melting Fabricated NiTi Alloy. J Alloys   Performance  of  a  Modified  CSTi  Dental  Implant  Coating.
               Compd, 804:220–9.                                   Inter J Oral Maxillofac Implants, 13:749–57.
               https://doi.org/10.1016/j.jallcom.2019.06.340.  63.  Rao X,  Chu CL, Zheng  YY, 2014, Phase Composition,
           52.  Khoo ZX, Liu Y, Low ZH, et al., 2018, Fabrication of SLM   Microstructure, and Mechanical  Properties of Porous  Ti-
               NiTi Shape Memory Alloy via Repetitive  Laser Scanning.   Nb-Zr  Alloys  Prepared  by  a  Two-Step Foaming  Powder
               Shap Mem Superelast, 4:112–20.                      Metallurgy Method. J Mech Behav Biomed Mater, 34:27–36.
               https://doi.org/10.1007/s40830-017-0139-7.          https://doi.org/10.1016/j.jmbbm.2014.02.001.
           53.  Saedi  S, Saghaian  SE, Jahadakbar  A,  et  al., 2018, Shape   64.  Yook SW, Do Jung H, Park CH, et al., 2012, Reverse Freeze
               Memory Response of Porous  NiTi Shape Memory Alloys   Casting:  A New Method for Fabricating  Highly Porous
               Fabricated  by Selective  Laser  Melting.  J  Mater  Sci  Mater   Titanium Scaffolds with Aligned Large Pores. Acta Biomater,
               Med, 29:40.                                         8:2401–10.

           38                          International Journal of Bioprinting (2021)–Volume 7, Issue 2
   37   38   39   40   41   42   43   44   45   46   47