Page 55 - IJB-7-2
P. 55

Daskalakis, et al.
           2.   Wiese A, Pape H, 2010, Bone Defects Caused by High-energy   14.  Taylor B, French B, Fowler T, et al., 2012, Induced Membrane
               Injuries,  Bone  Loss,  Infected  Nonunions,  and  Nonunions.   Technique for Reconstruction to Manage Bone Loss. J Am
               Orthop Clin North Am, 41:1–4.                       Acad Orthop Surg, 20:142–50.
               https://doi.org/10.1016/j.ocl.2009.07.003.      15.  Taylor  B,  Hancock  J,  Zitzke  R,  et  al.,  2015, Treatment  of
           3.   Giannoudis P, Einhorn T, Marsh D, 2007, Fracture Healing:   Bone Loss with the Induced Membrane Technique. J Orthop
               The Diamond Concept. Injury, 38:S3–6.               Trauma, 29:554–7.
               https://doi.org/10.1016/s0020-1383(08)70003-2.      https://doi.org/10.1097/bot.0000000000000338.
           4.   DeCoster T, Gehlert R, Mikola E, et al., 2004, Management   16.  Beris  A,  Lykissas  M,  Korompilias  A,  et  al.,  2011,
               of Posttraumatic Segmental Bone Defects. J Am Acad Orthop   Vascularized Fibula Transfer for Lower Limb Reconstruction.
               Surg, 12:28–38.                                     Microsurgery, 31:205–11.
           5.   Moghaddam A, Thaler B, Bruckner T, et al., 2017, Treatment      https://doi.org/10.1002/micr.20841.
               of Atrophic Femoral Non-unions According to the Diamond   17.  Denry  I,  Kuhn  L,  2016,  Design  and  Characterization  of
               Concept: Results of One-and Two-step Surgical Procedure. J   Calcium  Phosphate  Ceramic  Scaffolds  for  Bone  Tissue
               Orthop, 14:123–33.                                  Engineering. Dent Mater, 32:43–53.
               https://doi.org/10.1016/j.jor.2016.10.003.          https://doi.org/10.1016/j.dental.2015.09.008.
           6.   Scholz  A,  Gehrmann  S,  Glombitza  M,  et  al.,  2015,   18.  Oryan  A,  Alidadi  S,  Moshiri  A,  et al.,  2014,  Bone
               Reconstruction of Septic Diaphyseal Bone Defects with the   Regenerative  Medicine:  Classic  Options,  Novel  Strategies,
               Induced Membrane Technique. Injury, 46:S121–4.      and Future Directions. J Orthop Surg Res, 9:18.
               https://doi.org/10.1016/s0020-1383(15)30030-9.      https://doi.org/10.1186/1749-799x-9-18.
           7.   Calori  G,  Colombo  M,  Ripamonti  C,  et  al.,  2014,   19.  Tang D, Tare R, Yang L, et al., 2016, Biofabrication of Bone
               Megaprosthesis  in  Large  Bone  Defects:  Opportunity  or   Tissue:  Approaches,  Challenges  and  Translation  for  Bone
               Chimaera? Injury, 45:388–93.                        Regeneration. Biomaterials, 83:363–82.
               https://doi.org/10.1016/j.injury.2013.09.015.       https://doi.org/10.1016/j.biomaterials.2016.01.024.
           8.   Calori  G,  Colombo  M,  Malagoli  E,  et al.,  2014,   20.  Borra R, Lotufo M, Gagioti S, et al., 2009, A Simple Method
               Megaprosthesis  in  Post-traumatic  and  Periprosthetic  Large   to Measure Cell Viability in Proliferation and Cytotoxicity
               Bone Defects: Issues to Consider. Injury, 45:S105–10.   Assays. Braz Oral Res, 23:255–62.
               https://doi.org/10.1016/j.injury.2014.10.032.       DOI: 10.1590/s1806-83242009000300006.
           9.   Parvizi J, Sim F, 2004, Proximal Femoral Replacements with   21.  Lichte P, Pape H, Pufe T, et al., 2011, Scaffolds for Bone
               Megaprostheses. Clin Orthop Relat Res, 420:169–75.   Healing: Concepts, Materials and Evidence. Injury, 42:569–
               https://doi.org/10.1097/00003086-200403000-00023.   73.
           10.  Vaishya  R,  Singh A,  Hasija  R,  et al.,  2011,  Treatment  of      https://doi.org/10.1016/j.injury.2011.03.033.
               Resistant  Nonunion  of  Supracondylar  Fractures  Femur  by   22.  Liu  F,  Huang  B,  Hinduja  S,  et  al.,  2019,  Biofabrication
               Megaprosthesis.  Knee  Surg Sports Traumatol  Arthrosc,   Techniques  for  Ceramics  and  Composite  Bone  Scaffolds.
               19:1137–40.                                         In:  Antoniac  I,  editor.  Bioceramics  and  Biocomposites:
               https://doi.org/10.1007/s00167-011-1416-1.          From  Research  to  Clinical  Practice,  John Wiley  and  Sons,
           11.  Ashman O, Phillips A, 2013, Treatment of Non-unions with   Hoboken, New Jersey, pp. 17–37.
               Bone Defects: Which Option and Why? Injury, 44:S43–5.      https://doi.org/10.1002/9781119372097.ch2.
               https://doi.org/10.1016/s0020-1383(13)70010-x.  23.  Bartolo P, Kruth J, Silva J, et al., 2012, Biomedical Production
           12.  Papakostidis C, Bhandari M, Giannoudis P, 2013, Distraction   of  Implants  by  Additive  Electro-chemical  and  Physical
               Osteogenesis in the Treatment of Long Bone Defects of the   Processes. CIRP Ann, 61:635–55.
               Lower Limbs. Bone Joint J, 95-B:1673–80.        24.  Bártolo P, Chua C, Almeida H, et al., 2009, Biomanufacturing
               https://doi.org/10.1302/0301-620x.95b12.32385.      for Tissue Engineering: Present and Future Trends. Virtual
           13.  Masquelet  A,  Begue  T,  2010,  The  Concept  of  Induced   Phys Prototyp, 4:203–16.
               Membrane for Reconstruction of Long Bone Defects. Orthop   25.  Lee  J,  Ng  W,  Yeong  W,  2019,  Resolution  and  Shape  in
               Clin North Am, 41:27–37.                            Bioprinting: Strategizing towards Complex Tissue and Organ
               https://doi.org/10.1016/j.ocl.2009.07.011.          Printing. Appl Phys Rev, 6:011307.

                                       International Journal of Bioprinting (2021)–Volume 7, Issue 2        51
   50   51   52   53   54   55   56   57   58   59   60