Page 56 - IJB-7-2
        P. 56
     Investigating the Influence of Architecture and Material Composition of 3D Printed Anatomical Design Scaffolds for Large Bone Defects
               https://doi.org/10.1063/1.5053909.                  Tomogr, 14:107–14.
           26.  Ng W, Chua C, Shen Y, 2019, Print Me An Organ! Why We      https://doi.org/10.1097/00004728-199001000-00020.
               Are Not There Yet. Prog Polym Sci, 97:101145.   30.  Thomson R, Yaszemski M, Powers J, et al., 1996, Fabrication
               DOI: 10.1016/j.progpolymsci.2019.101145.            of Biodegradable Polymer Scaffolds to Engineer Trabecular
           27.  Vega-Avila E, Pugsley MK, 2011, An Overview of Colorimetric   Bone. J Biomater Sci Polym Ed, 7:23–38.
               Assay  Methods  Used  to Assess  Survival  or  Proliferation  of   31.  Porter  B,  Oldham  J,  He  SL,  et al.,  2000,  Mechanical
               Mammalian Cells. Proc West Pharmacol Soc, 54:10–4.
           28.  Huang B, Caetano G, Vyas C, et al., 2018, Polymer-Ceramic   Properties of a Biodegradable Bone Regeneration Scaffold. J
               Composite Scaffolds: The Effect of Hydroxyapatite and β-tri-  Biomech Eng, 122:286–8.
               Calcium Phosphate. Materials, 11:129.           32.  Williams J, Adewunmi A, Schek R, et al., 2005, Bone Tissue
               https://doi.org/10.3390/ma11010129.                 Engineering  Using  Polycaprolactone  Scaffolds  Fabricated
           29.  Lotz J, Gerhart T, Hayes W, 1990, Mechanical Properties of   via Selective Laser Sintering. Biomaterials, 26:4817–27.
               Trabecular Bone from the Proximal Femur. J Comput Assist      https://doi.org/10.1016/j.biomaterials.2004.11.057.
           52                          International Journal of Bioprinting (2021)–Volume 7, Issue 2
     	
