Page 56 - IJB-7-2
P. 56
Investigating the Influence of Architecture and Material Composition of 3D Printed Anatomical Design Scaffolds for Large Bone Defects
https://doi.org/10.1063/1.5053909. Tomogr, 14:107–14.
26. Ng W, Chua C, Shen Y, 2019, Print Me An Organ! Why We https://doi.org/10.1097/00004728-199001000-00020.
Are Not There Yet. Prog Polym Sci, 97:101145. 30. Thomson R, Yaszemski M, Powers J, et al., 1996, Fabrication
DOI: 10.1016/j.progpolymsci.2019.101145. of Biodegradable Polymer Scaffolds to Engineer Trabecular
27. Vega-Avila E, Pugsley MK, 2011, An Overview of Colorimetric Bone. J Biomater Sci Polym Ed, 7:23–38.
Assay Methods Used to Assess Survival or Proliferation of 31. Porter B, Oldham J, He SL, et al., 2000, Mechanical
Mammalian Cells. Proc West Pharmacol Soc, 54:10–4.
28. Huang B, Caetano G, Vyas C, et al., 2018, Polymer-Ceramic Properties of a Biodegradable Bone Regeneration Scaffold. J
Composite Scaffolds: The Effect of Hydroxyapatite and β-tri- Biomech Eng, 122:286–8.
Calcium Phosphate. Materials, 11:129. 32. Williams J, Adewunmi A, Schek R, et al., 2005, Bone Tissue
https://doi.org/10.3390/ma11010129. Engineering Using Polycaprolactone Scaffolds Fabricated
29. Lotz J, Gerhart T, Hayes W, 1990, Mechanical Properties of via Selective Laser Sintering. Biomaterials, 26:4817–27.
Trabecular Bone from the Proximal Femur. J Comput Assist https://doi.org/10.1016/j.biomaterials.2004.11.057.
52 International Journal of Bioprinting (2021)–Volume 7, Issue 2

