Page 18 - IJB-7-3
P. 18
Bottom-Up Microvessel Engineering
http://doi.org/10.1073/pnas.0507681102 25. Bertassoni LE, Cecconi M, Manoharan V, et al., 2014,
13. Chung BG, Kang L, Khademhosseini A, 2007, Micro-and Hydrogel Bioprinted Microchannel Networks for
Nanoscale Technologies for Tissue Engineering and Drug Vascularization of Tissue Engineering Constructs. Lab A
Discovery Applications. Expert Opin Drug Discov, 2:1653–68. Chip, 14:2202–11.
http://doi.org/10.1517/17460441.2.12.1653 https://doi.org/10.1039/c4lc00030g
14. Miller JS, Stevens KR, Yang MT, et al., 2012, Rapid Casting 26. Matsunaga YT, Morimoto Y, Takeuchi S, 2011, Molding Cell
of Patterned Vascular Networks for Perfusable Engineered Beads for Rapid Construction of Macroscopic 3D Tissue
Three-dimensional Tissues. Nat Mater, 11:768–74. Architecture. Adv Mater, 23:H90–4.
http://doi.org/10.1038/nmat3357 http://doi.org/10.1002/adma.201004375
15. Yue T, Zhao D, Phan DT, et al., 2021, A Modular Microfluidic 27. Tan A, Fujisawa K, Yukawa Y, et al., 2016, Bottom-up
System Based on a Multilayered Configuration to Generate Fabrication of Artery-Mimicking Tubular Co-cultures in
Large-Scale Perfusable Microvascular Networks. Microsyst Collagen-based Microchannel Scaffolds. Biomater Sci,
Nanoeng, 7:4. 4:1503–14.
http://doi.org/10.1038/s41378-020-00229-8 http://doi.org/10.1039/c6bm00340k
16. Niklason LE, Gao J, Abbott WM, et al., 1999, Functional 28. Nichol JW, Khademhosseini A, 2009, Modular Tissue
Arteries Grown In Vitro. Science, 284:489–93. Engineering: Engineering Biological Tissues from the
http://doi.org/10.1126/science.284.5413.489 Bottom Up. Soft Matter, 5:1312–9.
17. Gooch KJ, Blunk T, Courter DL, et al., 2002, Bone http://doi.org/10.1039/b814285h
Morphogenetic Proteins-2, -12, and -13 Modulate In Vitro 29. Gurkan UA, Tasoglu S, Kavaz D, et al., 2012, Emerging
Development of Engineered Cartilage. Tissue Eng, 8:591–601. Technologies for Assembly of Microscale Hydrogels. Adv
http://doi.org/10.1089/107632702760240517 Healthc Mater, 1:149–58.
18. Tranquillo RT, 2002, The Tissue-engineered Small-diameter https://doi.org/10.1002/adhm.201200011
Artery. Ann N Y Acad Sci, 961:251–4. 30. Onoe H, Okitsu T, Itou A, et al., 2013, Metre-long Cell-laden
http://doi.org/10.1111/j.1749-6632.2002.tb03094.x Microfibres Exhibit Tissue Morphologies and Functions. Nat
19. Boublik J, Park H, Radisic M, et al., 2005, Mechanical Mater, 12:584–90.
Properties and Remodeling of Hybrid Cardiac Constructs https://doi.org/10.1038/nmat3606
Made From Heart Cells, Fibrin, and Biodegradable, 31. Connon CJ, 2015, Approaches to Corneal Tissue Engineering:
Elastomeric Knitted Fabric. Tissue Eng, 11:1122–32. Top-down or Bottom-up? Proc Eng, 110:15–20.
http://doi.org/10.1089/ten.2005.11.1122 https://doi.org/10.1016/j.proeng.2015.07.004
20. Saito J, Kaneko M, Ishikawa Y, et al., 2021, Challenges 32. Bova L, Billi F, Cimetta E, 2020, Mini-review: Advances
and Possibilities of Cell-Based Tissue-Engineered Vascular in 3D Bioprinting of Vascularized Constructs. Biol Direct,
Grafts. Cyborg Bionic Syst, 2021:1532103. 15:22.
http://doi.org/10.34133/2021/1532103 http://doi.org/10.1186/s13062-020-00273-4
21. Ng HY, Lee KA, Kuo CN, et al., 2018, Bioprinting of 33. Mironov V, Visconti RP, Kasyanov V, et al., 2009, Organ
Artificial Blood Vessels. Int J Bioprint, 4:140. Printing: Tissue Spheroids as Building Blocks. Biomaterials,
http://doi.org/10.18063/IJB.v4i2.140 30:2164–74.
22. Arai T, Arai F, Yamato M, 2015, Hyper Bio Assembler for 3D http://doi.org/10.1016/j.biomaterials.2008.12.084
Cellular Systems. Japan: Springer. 34. Fennema E, Rivron N, Rouwkema J, et al., 2013, Spheroid
https://doi.org/10.1007/978-4-431-55297-0 Culture as a Tool for Creating 3D Complex Tissues. Trends
23. Yang J, Yamato M, Sekine H, et al., 2009, Tissue Engineering Biotechnol, 31:108–15.
Using Laminar Cellular Assemblies. Adv Mater, 21:3404–9. https://doi.org/10.1016/j.tibtech.2012.12.003
http://doi.org/10.1002/adma.200801990 35. Rivron NC, Vrij EJ, Rouwkema J, et al., 2012, Tissue
24. Kinstlinger IS, Saxton SH, Calderon GA, et al., 2020, Deformation Spatially Modulates VEGF Signaling and
Generation of Model Tissues with Dendritic Vascular Angiogenesis. Proc Natl Acad Sci, 109:6886–91.
Networks via Sacrificial Laser-sintered Carbohydrate https://doi.org/10.1073/pnas.1201626109
Templates. Nat Biomed Eng, 2020:1–17. 36. Torisawa YS, Chueh BH, Huh D, et al., 2007. Efficient
https://doi.org/10.1038/s41551-020-0566-1 Formation of Uniform-sized Embryoid Bodies Using a
14 International Journal of Bioprinting (2021)–Volume 7, Issue 3

