Page 18 - IJB-7-3
P. 18

Bottom-Up Microvessel Engineering
               http://doi.org/10.1073/pnas.0507681102          25.  Bertassoni LE, Cecconi  M, Manoharan  V,  et al., 2014,
           13.  Chung  BG,  Kang  L,  Khademhosseini  A,  2007,  Micro-and   Hydrogel  Bioprinted  Microchannel  Networks  for
               Nanoscale  Technologies  for  Tissue Engineering  and  Drug   Vascularization  of  Tissue Engineering Constructs.  Lab A
               Discovery Applications. Expert Opin Drug Discov, 2:1653–68.  Chip, 14:2202–11.
               http://doi.org/10.1517/17460441.2.12.1653           https://doi.org/10.1039/c4lc00030g
           14.  Miller JS, Stevens KR, Yang MT, et al., 2012, Rapid Casting   26.  Matsunaga YT, Morimoto Y, Takeuchi S, 2011, Molding Cell
               of Patterned  Vascular Networks for Perfusable Engineered   Beads for Rapid Construction of Macroscopic 3D  Tissue
               Three-dimensional Tissues. Nat Mater, 11:768–74.    Architecture. Adv Mater, 23:H90–4.
               http://doi.org/10.1038/nmat3357                     http://doi.org/10.1002/adma.201004375
           15.  Yue T, Zhao D, Phan DT, et al., 2021, A Modular Microfluidic   27.  Tan  A,  Fujisawa  K, Yukawa Y,  et al., 2016, Bottom-up
               System Based on a Multilayered Configuration to Generate   Fabrication  of  Artery-Mimicking  Tubular Co-cultures in
               Large-Scale Perfusable Microvascular Networks. Microsyst   Collagen-based  Microchannel  Scaffolds.  Biomater Sci,
               Nanoeng, 7:4.                                       4:1503–14.
               http://doi.org/10.1038/s41378-020-00229-8           http://doi.org/10.1039/c6bm00340k
           16.  Niklason  LE,  Gao  J, Abbott WM,  et al., 1999, Functional   28.  Nichol  JW,  Khademhosseini  A,  2009,  Modular  Tissue
               Arteries Grown In Vitro. Science, 284:489–93.       Engineering:  Engineering  Biological  Tissues from the
               http://doi.org/10.1126/science.284.5413.489         Bottom Up. Soft Matter, 5:1312–9.
           17.  Gooch  KJ,  Blunk  T,  Courter  DL,  et al., 2002, Bone      http://doi.org/10.1039/b814285h
               Morphogenetic Proteins-2,  -12, and  -13 Modulate  In Vitro   29.  Gurkan  UA,  Tasoglu  S,  Kavaz  D,  et al., 2012, Emerging
               Development of Engineered Cartilage. Tissue Eng, 8:591–601.  Technologies for Assembly of Microscale Hydrogels.  Adv
               http://doi.org/10.1089/107632702760240517           Healthc Mater, 1:149–58.
           18.  Tranquillo RT, 2002, The Tissue-engineered Small-diameter      https://doi.org/10.1002/adhm.201200011
               Artery. Ann N Y Acad Sci, 961:251–4.            30.  Onoe H, Okitsu T, Itou A, et al., 2013, Metre-long Cell-laden
               http://doi.org/10.1111/j.1749-6632.2002.tb03094.x   Microfibres Exhibit Tissue Morphologies and Functions. Nat
           19.  Boublik J, Park H, Radisic M,  et al., 2005, Mechanical   Mater, 12:584–90.
               Properties  and  Remodeling  of  Hybrid  Cardiac  Constructs      https://doi.org/10.1038/nmat3606
               Made  From  Heart  Cells,  Fibrin,  and  Biodegradable,   31.  Connon CJ, 2015, Approaches to Corneal Tissue Engineering:
               Elastomeric Knitted Fabric. Tissue Eng, 11:1122–32.  Top-down or Bottom-up? Proc Eng, 110:15–20.
               http://doi.org/10.1089/ten.2005.11.1122             https://doi.org/10.1016/j.proeng.2015.07.004
           20.  Saito J, Kaneko M, Ishikawa  Y,  et al., 2021, Challenges   32.  Bova  L,  Billi  F,  Cimetta  E,  2020,  Mini-review: Advances
               and Possibilities of Cell-Based Tissue-Engineered Vascular   in 3D Bioprinting  of Vascularized  Constructs.  Biol  Direct,
               Grafts. Cyborg Bionic Syst, 2021:1532103.           15:22.
               http://doi.org/10.34133/2021/1532103                http://doi.org/10.1186/s13062-020-00273-4
           21.  Ng HY, Lee  KA, Kuo CN,  et  al.,  2018,  Bioprinting  of   33.  Mironov  V,  Visconti  RP,  Kasyanov  V,  et  al., 2009, Organ
               Artificial Blood Vessels. Int J Bioprint, 4:140.    Printing: Tissue Spheroids as Building Blocks. Biomaterials,
               http://doi.org/10.18063/IJB.v4i2.140                30:2164–74.
           22.  Arai T, Arai F, Yamato M, 2015, Hyper Bio Assembler for 3D      http://doi.org/10.1016/j.biomaterials.2008.12.084
               Cellular Systems. Japan: Springer.              34.  Fennema E, Rivron N, Rouwkema J, et al., 2013, Spheroid
               https://doi.org/10.1007/978-4-431-55297-0           Culture as a Tool for Creating 3D Complex Tissues. Trends
           23.  Yang J, Yamato M, Sekine H, et al., 2009, Tissue Engineering   Biotechnol, 31:108–15.
               Using Laminar Cellular Assemblies. Adv Mater, 21:3404–9.     https://doi.org/10.1016/j.tibtech.2012.12.003
               http://doi.org/10.1002/adma.200801990           35.  Rivron NC,  Vrij  EJ, Rouwkema  J,  et  al.,  2012, Tissue
           24.  Kinstlinger  IS,  Saxton  SH,  Calderon  GA,  et  al., 2020,   Deformation  Spatially  Modulates  VEGF  Signaling  and
               Generation  of  Model  Tissues  with  Dendritic  Vascular   Angiogenesis. Proc Natl Acad Sci, 109:6886–91.
               Networks  via  Sacrificial  Laser-sintered  Carbohydrate      https://doi.org/10.1073/pnas.1201626109
               Templates. Nat Biomed Eng, 2020:1–17.           36.  Torisawa  YS, Chueh BH, Huh D,  et al.,  2007.  Efficient
               https://doi.org/10.1038/s41551-020-0566-1           Formation  of Uniform-sized Embryoid Bodies Using a

           14                          International Journal of Bioprinting (2021)–Volume 7, Issue 3
   13   14   15   16   17   18   19   20   21   22   23