Page 19 - IJB-7-3
P. 19

Liu, et al.
               Compartmentalized Microchannel Device. Lab Chip, 7:770–6.  as Bioink for Bioprinting. Acta Biomater, 10:4323–31.
               https://doi.org/10.1039/B618439A.                   https://doi.org/10.1016/j.actbio.2014.06.034
           37.  Tamayol A, Akbari M, Annabi N, et al., 2013, Fiber-based   48.  Guvendiren M, Molde J, Soares RM, et al., 2016, Designing
               Tissue Engineering: Progress, Challenges, and Opportunities.   Biomaterials for 3D Printing. ACS Biomater Sci Eng, 2:1679–
               Biotechnol Adv, 31:669–87.                          93.
               https://doi.org/10.1016/j.biotechadv.2012.11.007     https://doi.org/10.1021/acsbiomaterials.6b00121
           38.  Teshima T, Onoe H, Kuribayashiashiashias K, et al., 2014,   49.  Hospodiuk M, Dey M, Sosnoski D, et al., 2017, The Bioink:
               Parylene Mobile Microplates Integrated with an Enzymatic   A  Comprehensive  Review  on  Bioprintable  Materials.
               Release  for Handling of Single  Adherent Cells.  Small,   Biotechnol Adv, 35:217–39.
               10:912–21.                                          https://doi.org/10.1016/j.biotechadv.2016.12.006
               https://doi.org/10.1002/smll.201301993          50.  Gomez-Guillen MC, Turnay J, Fernandez-Dıaz MD, et al.,
           39.  Kuribayashi-Shigetomi K, Onoe H, Takeuchi S, 2012, Cell   2002, Structural and Physical Properties of Gelatin Extracted
               Origami:  Self-Folding  of  Three-Dimensional  Cell-Laden   from Different Marine Species: A Comparative Study. Food
               Microstructures Driven by Cell Traction Force. PLoS One,   Hydrocoll, 16:25–34.
               7:e51085.                                           https://doi.org/10.1016/S0268-005X(01)00035-2
               https://doi.org/10.1371/journal.pone.0051085    51.  Rowley  JA,  Madlambayan  G,  Mooney  DJ,  1999, Alginate
           40.  Yue, T, Nakajima M, Tajima H, et al., 2013. Fabrication of   Hydrogels as Synthetic  Extracellular  Matrix  Materials.
               Microstructures  Embedding  Controllable  Particles  inside   Biomaterials, 20:45–53.
               Dielectrophoretic Microfluidic Devices. Int J Adv Robot Syst,      https://doi.org/10.1016/S0142-9612(98)00107-0
               10:132–40.                                      52.  Demirtas TT, Irmak G, Gümüs M, et al., 2017, A Bioprintable
               https://doi.org/10.5772/55598                       form of Chitosan Hydrogel for Bone  Tissue Engineering.
           41.  Gach  PC,  Wang  Y,  Phillips  C,  et al., 2011, Isolation and   Biofabrication, 9:35003.
               Manipulation  of Living  Adherent Cells by Micromolded      https://doi.org/10.1088/1758-5090/aa7b1d
               Magnetic Rafts. Biomicrofluidics, 5:32002–12.   53.  Loo  Y, Hauser CA, 2015, Bioprinting Synthetic Self-
               https://doi.org/10.1063/1.3608133                   assembling Peptide Hydrogels for Biomedical Applications.
           42.  Liu Z,  Takeuchi M, Nakajima M,  et al., 2016, Batch   Biomed Mater, 11:14103.
               Fabrication  of  Microscale  Gear-Like  Tissue  by  Alginate-     https://doi.org/10.1088/1748-6041/11/1/014103
               Poly-L-lysine (PLL) Microcapsules System.  IEEE Robot   54.  Du Y, Lo E, Ali S, et al., 2008, Directed Assembly of Cell-
               Autom Lett, 1:206–12.                               laden Microgels for Fabrication  of 3D  Tissue Constructs.
               https://doi.org/10.1109/lra.2016.2514500            Proc Natl Acad Sci, 105:9522–7.
           43.  Yokoyama U, Tonooka Y, Koretake R, et al., 2017, Arterial      https://doi.org/10.1073/pnas.0801866105
               Graft  with  Elastic  Layer  Structure  Grown  From  Cells.  Sci   55.  Elbert DL, 2011, Bottom-up Tissue Engineering. Curr Opin
               Rep, 7:140–55.                                      Biotechnol, 22:674–80.
               https://doi.org/10.1038/s41598-017-00237-1          https://doi.org/10.1016/j.copbio.2011.04.001
           44.  Hinds MT, Rowe RC, Ren Z, et al., 2006, Development of   56.  Kasza KE, Rowat AC, Liu  J,  et al., 2007,  The Cell  as a
               a Reinforced Porcine Elastin Composite Vascular Scaffold.   Material. Curr Opin Cell Biol, 19:101–7.
               J Biomed Mater Res Part A, 77A:458–69.              https://doi.org/10.1016/j.ceb.2006.12.002
               https://doi.org/10.1002/jbm.a.30571             57.  Avci  E,  Ohara  K, Nguyen  CN,  et  al.,  2015, High-Speed
           45.  Rutz AL, Lewis PL, Shah RN, 2017, Toward Next-generation   Automated  Manipulation  of  Microobjects  Using a  Two-
               Bioinks: Tuning Material Properties Pre-and Post-printing to   Fingered Microhand. IEEE Trans Ind Electron, 62:1070–9.
               Optimize Cell Viability. MRS Bull, 42:563–70.       https://doi.org/10.1109/TIE.2014.2347004
               https://doi.org/10.1557/mrs.2017.162            58.  Ramadan AA, Takubo T, Mae Y, et al., 2009, Developmental
           46.  Mobaraki  M,  Ghaffari  M,  Yazdanpanah  A,  et al., 2020,   Process of a Chopstick-Like Hybrid-Structure Two-Fingered
               Bioinks and Bioprinting:  A  Focused Review.  Bioprinting,   Micromanipulator Hand for 3-D Manipulation of Microscopic
               18:e00080–95.                                       Objects. IEEE Trans Ind Electron, 56:1121–35.
               https://doi.org/10.1016/j.bprint.2020.e00080        https://doi.org/10.1109/TIE.2008.2008753
           47.  Jia J, Richards DJ, Pollard S, et al., 2014, Engineering Alginate   59.  L’Heureux N, Quet SP, Labbe R, et al., 1998, A Completely

                                       International Journal of Bioprinting (2021)–Volume 7, Issue 3        15
   14   15   16   17   18   19   20   21   22   23   24