Page 126 - IJB-7-4
P. 126
CNC-enhanced Hydrogels for 3D Bioprinting
https://doi.org/10.1007/s10570-016-0868-3 37. Lu HD, Charati MB, Kim IL, et al., 2012, Injectable Shear-
32. Ma T, Yang R, Zheng Z, et al., 2017, Rheology of Fumed Thinning Hydrogels Engineered with a Self-Assembling
Silica/Polydimethylsiloxane Suspensions. J Rheol, 61:205–15. Dock-and-Lock Mechanism. Biomaterials, 33:2145–53.
https://doi.org/10.1122/1.4973974 https://doi.org/10.1016/j.biomaterials.2011.11.076
33. Song Y, Zheng Q, 2015, Linear Rheology of Nanofilled 38. Wang Q, Mynar JL, Yoshida M, et al., 2010, High-Water-
Polymers. J Rheol, 59:155–91. Content Mouldable Hydrogels by Mixing Clay and a
34. Song Y, Zheng Q, 2016, A Guide for Hydrodynamic Dendritic Molecular Binder. Nature, 463:339.
Reinforcement Effect in Nanoparticle-Filled Polymers. Crit https://doi.org/10.1038/nature08693
Rev Solid State Mater Sci, 41:318–46. 39. Olsen BD, Kornfield JA, Tirrell DA, 2010, Yielding
https://doi.org/10.1080/10408436.2015.1135415 Behavior in Injectable Hydrogels from Telechelic Proteins.
35. Song Y, Zheng Q, 2016, Concepts and Conflicts in Macromolecules, 43:9094–9.
Nanoparticles Reinforcement to Polymers Beyond https://doi.org/10.1021/ma101434a
Hydrodynamics. Prog Mater Sci, 84:1–58. 40. Zhang Z, Ni J, Chen L, et al., 2011, Biodegradable and
36. Fan X, Xu H, Zhang Q, et al., 2019, Insight into the Weak Thermoreversible PCLA-PEG-PCLA Hydrogel as a Barrier
Strain Overshoot of Carbon Black Filled Natural Rubber. for Prevention of Post-Operative Adhesion. Biomaterials,
Polymer, 167:109–17. 32:4725–36.
https://doi.org/10.1016/j.polymer.2019.01.076 https://doi.org/10.1016/j.biomaterials.2011.03.046
122 International Journal of Bioprinting (2021)–Volume 7, Issue 4

