Page 125 - IJB-7-4
P. 125
Cui, et al.
48:6482–8. Study Cellular Interactions and Therapeutics. Adv Mater,
9. Hoffman AS, 2012, Hydrogels for Biomedical Applications. 31:1806590.
Adv Drug Deliv Rev, 64:18–23. https://doi.org/10.1002/adma.201806590
10. Sponchioni M, Palmiero UC, Moscatelli D, 2019, Thermo- 21. Lim KS, Galarraga JH, Cui X, et al., 2020, Fundamentals and
Responsive Polymers: Applications of Smart Materials in Applications of Photo-Cross-Linking in Bioprinting. Chem
Drug Delivery and Tissue Engineering. Mater Sci Eng C, Rev, 120:10662–94.
102:589–605. 22. Billiet T, Gevaert E, de Schryver T, et al., 2014, The 3D
https://doi.org/10.1016/j.msec.2019.04.069 Printing of Gelatin Methacrylamide Cell-Laden Tissue-
11. Jungst T, Smolan W, Schacht K, et al., 2016, Strategies and Engineered Constructs with High Cell Viability. Biomaterials,
Molecular Design Criteria for 3D Printable Hydrogels. Chem 35:49–62.
Rev, 116:1496–539. https://doi.org/10.1016/j.biomaterials.2013.09.078
https://doi.org/10.1021/acs.chemrev.5b00303 23. Colosi C, Shin SR, Manoharan V, et al., 2016, Microfluidic
12. Nikolova MP, Chavali MS, 2019, Recent Advances in Bioprinting of Heterogeneous 3D Tissue Constructs Using
Biomaterials for 3D Scaffolds: A review. Bioact Mater, Low-Viscosity Bioink. Adv Mater, 28:677–84.
4:271–92. https://doi.org/10.1002/adma.201503310
13. Zarrintaj P, Jouyandeh M, Ganjali MR, et al., 2019, Thermo- 24. Moon RJ, Martini A, Nairn J, et al., 2011, Cellulose
Sensitive Polymers in Medicine: A Review. Eur Polym J, Nanomaterials Review: Structure, Properties and
117:402–23. Nanocomposites. Chem Soc Rev, 40:3941–94.
14. Drzewiecki KE, Parmar AS, Gaudet ID, et al., 2014, https://doi.org/10.1039/c0cs00108b
Methacrylation Induces Rapid, Temperature-Dependent, 25. Kargarzadeh H, Mariano M, Gopakumar D, et al., 2018,
Reversible Self-Assembly of Type-I Collagen. Langmuir, Advances in Cellulose Nanomaterials. Cellulose, 25:2151–89.
30:11204–11. https://doi.org/10.1007/s10570-018-1723-5
https://doi.org/10.1021/la502418s 26. Kontturi E, Laaksonen P, Linder MB, et al., 2018, Advanced
15. Kajave NS, Schmitt T, Nguyen TU, et al., 2020, Dual Materials through Assembly of Nanocelluloses. Adv Mater,
Crosslinking Strategy to Generate Mechanically Viable Cell- 30:1703779.
Laden Printable Constructs using Methacrylated Collagen https://doi.org/10.1002/adma.201703779
Bioinks. Mater Sci Eng C, 107:110290. 27. Almeida AP, Canejo JP, Fernandes SN, et al., 2018, Cellulose-
https://doi.org/10.1016/j.msec.2019.110290 Based Biomimetics and Their Applications. Adv Mater,
16. Cui Y, Jin R, Zhou Y, et al., 2021, Crystallization Enhanced 30:1703655.
Thermal-Sensitive Hydrogels of PCL-PEG-PCL Triblock https://doi.org/10.1002/adma.201703655
Copolymer for 3D Printing. Biomed Mater, 16:035006. 28. Yang J, Han CR, Duan JF, et al., 2012, Studies on the Properties
https://doi.org/10.1088/1748-605x/abc38e and Formation Mechanism of Flexible Nanocomposite
17. Wang Z, An G, Zhu Y, et al., 2019, 3D-Printable Self-Healing Hydrogels from Cellulose Nanocrystals and Poly (Acrylic
and Mechanically Reinforced Hydrogels With Host-Guest Acid). J Mater Chem, 22:22467–80.
Non-Covalent Interactions Integrated into Covalently Linked https://doi.org/10.1039/c2jm35498e
Networks. Mater Horiz, 6:733–42. 29. Siqueira G, Kokkinis D, Libanori R, et al., 2017, Cellulose
https://doi.org/10.1039/c8mh01208c Nanocrystal Inks for 3D Printing of Textured Cellular
18. Yue K, Trujillo-de Santiago G, Alvarez MM, et al., 2015, Architectures. Adv Funct Mater, 27:1604619.
Synthesis, Properties, and Biomedical Applications of Gelatin https://doi.org/10.1002/adfm.201604619
Methacryloyl (GelMA) Hydrogels. Biomaterials, 73:254–71. 30. Yang J, Han CR, Duan JF, et al., 2013, Mechanical and
https://doi.org/10.1016/j.biomaterials.2015.08.045 Viscoelastic Properties of Cellulose Nanocrystals Reinforced
19. van den Bulcke AI, Bogdanov B, de Rooze N, et al., 2000, Poly (Ethylene Glycol) Nanocomposite Hydrogels. ACS Appl
Structural and Rheological Properties of Methacrylamide Mater Interfaces, 5:3199–207.
Modified Gelatin Hydrogels. Biomacromolecules, 1:31–8. https://doi.org/10.1021/am4001997
https://doi.org/10.1021/bm990017d 31. Ching YC, Ershad Ali M, Abdullah LC, et al., 2016,
20. Heinrich MA, Bansal R, Lammers T, et al., 2019, Rheological Properties of Cellulose Nanocrystal-Embedded
3D-Bioprinted Mini-Brain: A Glioblastoma Model to Polymer Composites: A Review. Cellulose, 23:1011–30.
International Journal of Bioprinting (2021)–Volume 7, Issue 4 121

