Page 125 - IJB-7-4
P. 125

Cui, et al.
               48:6482–8.                                          Study Cellular  Interactions  and  Therapeutics.  Adv Mater,
           9.   Hoffman AS, 2012, Hydrogels for Biomedical Applications.   31:1806590.
               Adv Drug Deliv Rev, 64:18–23.                       https://doi.org/10.1002/adma.201806590
           10.  Sponchioni M, Palmiero UC, Moscatelli D, 2019, Thermo-  21.  Lim KS, Galarraga JH, Cui X, et al., 2020, Fundamentals and
               Responsive Polymers:  Applications  of Smart Materials  in   Applications  of Photo-Cross-Linking in Bioprinting.  Chem
               Drug  Delivery and  Tissue Engineering.  Mater Sci Eng C,   Rev, 120:10662–94.
               102:589–605.                                    22.  Billiet  T, Gevaert E, de Schryver  T,  et al., 2014,  The 3D
               https://doi.org/10.1016/j.msec.2019.04.069          Printing of Gelatin  Methacrylamide  Cell-Laden  Tissue-
           11.  Jungst T, Smolan W, Schacht K, et al., 2016, Strategies and   Engineered Constructs with High Cell Viability. Biomaterials,
               Molecular Design Criteria for 3D Printable Hydrogels. Chem   35:49–62.
               Rev, 116:1496–539.                                  https://doi.org/10.1016/j.biomaterials.2013.09.078
               https://doi.org/10.1021/acs.chemrev.5b00303     23.  Colosi C, Shin SR, Manoharan V, et al., 2016, Microfluidic
           12.  Nikolova  MP,  Chavali  MS,  2019,  Recent  Advances  in   Bioprinting  of Heterogeneous  3D  Tissue Constructs  Using
               Biomaterials  for  3D  Scaffolds:  A  review.  Bioact  Mater,   Low-Viscosity Bioink. Adv Mater, 28:677–84.
               4:271–92.                                           https://doi.org/10.1002/adma.201503310
           13.  Zarrintaj P, Jouyandeh M, Ganjali MR, et al., 2019, Thermo-  24.  Moon RJ, Martini  A, Nairn J,  et  al., 2011, Cellulose
               Sensitive  Polymers in  Medicine: A  Review.  Eur Polym  J,   Nanomaterials  Review:  Structure,  Properties  and
               117:402–23.                                         Nanocomposites. Chem Soc Rev, 40:3941–94.
           14.  Drzewiecki  KE, Parmar  AS, Gaudet  ID,  et  al., 2014,      https://doi.org/10.1039/c0cs00108b
               Methacrylation  Induces Rapid,  Temperature-Dependent,   25.  Kargarzadeh  H,  Mariano  M,  Gopakumar  D,  et al., 2018,
               Reversible  Self-Assembly of  Type-I Collagen.  Langmuir,   Advances in Cellulose Nanomaterials. Cellulose, 25:2151–89.
               30:11204–11.                                        https://doi.org/10.1007/s10570-018-1723-5
               https://doi.org/10.1021/la502418s               26.  Kontturi E, Laaksonen P, Linder MB, et al., 2018, Advanced
           15.  Kajave  NS,  Schmitt  T,  Nguyen  TU,  et  al., 2020, Dual   Materials through Assembly of Nanocelluloses. Adv Mater,
               Crosslinking Strategy to Generate Mechanically Viable Cell-  30:1703779.
               Laden Printable Constructs using Methacrylated  Collagen      https://doi.org/10.1002/adma.201703779
               Bioinks. Mater Sci Eng C, 107:110290.           27.  Almeida AP, Canejo JP, Fernandes SN, et al., 2018, Cellulose-
               https://doi.org/10.1016/j.msec.2019.110290          Based Biomimetics  and  Their  Applications.  Adv Mater,
           16.  Cui Y, Jin R, Zhou Y, et al., 2021, Crystallization Enhanced   30:1703655.
               Thermal-Sensitive  Hydrogels of PCL-PEG-PCL  Triblock      https://doi.org/10.1002/adma.201703655
               Copolymer for 3D Printing. Biomed Mater, 16:035006.  28.  Yang J, Han CR, Duan JF, et al., 2012, Studies on the Properties
               https://doi.org/10.1088/1748-605x/abc38e            and  Formation  Mechanism  of Flexible  Nanocomposite
           17.  Wang Z, An G, Zhu Y, et al., 2019, 3D-Printable Self-Healing   Hydrogels from Cellulose Nanocrystals and Poly (Acrylic
               and Mechanically  Reinforced  Hydrogels  With Host-Guest   Acid). J Mater Chem, 22:22467–80.
               Non-Covalent Interactions Integrated into Covalently Linked      https://doi.org/10.1039/c2jm35498e
               Networks. Mater Horiz, 6:733–42.                29.  Siqueira G, Kokkinis D, Libanori R, et al., 2017, Cellulose
               https://doi.org/10.1039/c8mh01208c                  Nanocrystal  Inks for 3D Printing of  Textured  Cellular
           18.  Yue K, Trujillo-de  Santiago G, Alvarez MM,  et al.,  2015,   Architectures. Adv Funct Mater, 27:1604619.
               Synthesis, Properties, and Biomedical Applications of Gelatin      https://doi.org/10.1002/adfm.201604619
               Methacryloyl (GelMA) Hydrogels. Biomaterials, 73:254–71.  30.  Yang J, Han CR, Duan JF,  et  al., 2013, Mechanical  and
               https://doi.org/10.1016/j.biomaterials.2015.08.045  Viscoelastic Properties of Cellulose Nanocrystals Reinforced
           19.  van den Bulcke AI, Bogdanov B, de Rooze N, et al., 2000,   Poly (Ethylene Glycol) Nanocomposite Hydrogels. ACS Appl
               Structural and Rheological  Properties of Methacrylamide   Mater Interfaces, 5:3199–207.
               Modified Gelatin Hydrogels. Biomacromolecules, 1:31–8.     https://doi.org/10.1021/am4001997
               https://doi.org/10.1021/bm990017d               31.  Ching  YC, Ershad  Ali M,  Abdullah LC,  et al.,  2016,
           20.  Heinrich MA, Bansal R, Lammers  T,  et al.,  2019,   Rheological Properties of Cellulose Nanocrystal-Embedded
               3D-Bioprinted  Mini-Brain:  A  Glioblastoma  Model  to   Polymer Composites: A Review. Cellulose, 23:1011–30.

                                       International Journal of Bioprinting (2021)–Volume 7, Issue 4       121
   120   121   122   123   124   125   126   127   128   129   130