Page 182 - IJB-7-4
P. 182

3D Printing Custom Shoe Sole
           20.  Begg L, Burns J, 2008, A Comparison of Insole Materials on      https://doi.org/10.18063/ijb.v6i2.259
               Plantar Pressure and Comfort in the Neuroischaemic Diabetic   29.  Kolan KC, Huang YW, Semon JA, et al., 2020, 3D-printed
               Foot. Clin Biomech, 23:710–11.                      Biomimetic Bioactive Glass Scaffolds for Bone Regeneration
               https://doi.org/10.1016/j.clinbiomech.2008.03.055   in Rat Calvarial Defects. Int J Bioprint, 6:274.
           21.  Chatzistergos PE, Naemi R, Healy A, et al., 2017, Subject      https://doi.org/10.18063/ijb.v6i2.274
               Specific Optimisation of the Stiffness of Footwear Material   30.  Dong G, Tessier D, Zhao Y, 2019, Design of Shoe Soles Using
               for Maximum Plantar Pressure Reduction. Ann Biomed Eng,   Lattice  Structures  Fabricated  by  Additive  Manufacturing.
               45:1929–40.                                         Proc Des Soc, 1:719–28.
               https://doi.org/10.1007/s10439-017-1826-4           https://doi.org/10.1017/dsi.2019.76
           22.  Chatzistergos P, Farrugia K, Wright M, et al., 2019, Patient   31.  Ng WL, Lee JM, Zhou M, et al., 2020, Vat Polymerization-
               Specific Optimisation of the Stiffness of 3D Printed Orthoses   based Bioprinting-Process, Materials,  Applications and
               for People  with  Diabetic  Foot  Syndrome. The  Hague, The   Regulatory Challenges. Biofabrication, 12:022001.
               Netherlands:  8   International  Symposium  on Diabetic      https://doi.org/10.1088/1758-5090/ab6034
                          th
               FootAt: World Forum.                            32.  Redmann A, Oehlmann P, Scheffler T, et al., 2020, Thermal
           23.  Cheung JT, Zhang M, Leung  AK,  et al.,  2005, Three-  Curing Kinetics  Optimization  of Epoxy Resin in Digital
               dimensional Finite Element  Analysis of the Foot during   Light Synthesis. Addit Manuf, 32:101018.
               Standing a Material Sensitivity Study. J Biomech, 38:1045–54.     https://doi.org/10.1016/j.addma.2019.101018
           24.  Sarikhani  A,  Motalebizadeh  A, Asiaei  S,  et  al., 2016,   33.  Sillani F, Kleijnen RG, Vetterli M, et al., 2019, Selective Laser
               Studying Maximum Plantar Stress Per Insole Design Using   Sintering and Multi Jet Fusion: Process-induced Modification
               Foot CT-Scan Images of Hyperelastic  Soft  Tissues.  Appl   of the Raw Materials and Analyses of Parts Performance.
               Bionics Biomech, 2016:8985690.                      Addit Manuf, 27:32–41.
               https://doi.org/10.1155/2016/8985690                https://doi.org/10.1016/j.addma.2019.02.004
           25.  Tarrade T, Doucet F, Saint-Lô N, et al., 2019, Are Custom-  34.  Rai  D,  Aggarwal  L,  2006,  The  Study  of  Plantar  Pressure
               made Foot Orthoses of any Interest on the  Treatment of   Distribution  in Normal  and Pathological  Foot.  Pol  J Med
               Foot Pain for Prolonged Standing Workers?  Appl Ergon,   Phys Eng, 12:25–34.
               80:130–5.                                       35.  Nandikolla V, Bochen R, Meza S, et al., 2017, Experimental
               https://doi.org/10.1016/j.apergo.2019.05.013        Gait Analysis to Study Stress Distribution of the Human Foot.
           26.  Kim JS, Fell DW, Cha YJ, et al., 2012, Effects of Different   J Med Eng, 2017:3432074.
               Heel Heights on Plantar Foot Pressure Distribution of Older      https://doi.org/10.1155/2017/3432074
               Women During Walking. J Phys Ther Sci, 24:1091–4.  36.  Koike S Okina S, 2012, A Modeling Method of Sport Shoes
               https://doi.org/10.1589/jpts.24.1091                for Dynamic Analysis of Shoe-body Coupled System. Proc
           27.  Kumar  A, Collini L, Daurel  A,  et al., 2020, Design and   Eng, 34:272–7.
               Additive  Manufacturing  of Closed Cells from Supportless      https://doi.org/10.1016/j.proeng.2012.04.047
               Lattice Structure. Addit Manuf, 33:101168.      37.  Hossain  M,  Navaratne  R,  Perić  D,  2020,  3D  Printed
               https://doi.org/10.1016/j.addma.2020.101168         Elastomeric  Polyurethane:  Viscoelastic  Experimental
           28.  Zolfagharian  A, Gregory  TM, Bodaghi  M,  et  al., 2020,   Characterizations and Constitutive Modelling with Nonlinear
               Patient-specific  3D-printed  Splint  for  Mallet  Finger  Injury.   Viscosity Functions. Int J Nonlinear Mech, 126:103546.
               Int J Bioprint, 6:259.                              https://doi.org/10.1016/j.ijnonlinmec.2020.103546

















           178                         International Journal of Bioprinting (2021)–Volume 7, Issue 4
   177   178   179   180   181   182   183   184   185   186   187